人工智能的利与弊(通用13篇)
【www.xiaoyuzl.com--范文大全】
论文是一个汉语词语,拼音是lùnwén,古典文学常见论文一词,谓交谈辞章或交流思想。下面是小编精心整理的人工智能的利与弊(通用13篇),仅供参考,大家一起来看看吧。【篇1】人工智能的利与弊
摘要:崔政博士的新著《科学技术知识的政治经济学研究》以马克思的“劳动”概念为中心,提供了一个划定人工智能替代人类劳动的边界框架。该书区分了重复性劳动与创造性劳动,提出创造性劳动是人类劳动的本质也是人工智能不可替代的。但需要进一步指出的是,机器学习已经在认识实践中表现出对人类认知劳动的极大辅助作用,包括:人工智能能够提升科学知识生产效率;人工智能擅于提取和传递默会知识;人工智能可以产生某种机器知识。以上原因使得我们在创造性劳动中很难将人工智能排除在外,未来可能的创造性劳动方式应当是某种人机协作或人机融合。
关键词:人工智能;创造性劳动;科学知识;默会知识;机器知识
中图分类号:TP18文献标识码:A文章编号:CN61-1487-(2022)01-0154-03
产业科学出现以来,科技创新对经济增长的驱动作用已经成为全球性的共识。崔政博士的新著——《科学技术知识的政治经济学研究》,试图以“劳动”概念的历史分析为切入点,讨论科学技术在当代资本主义经济中所扮演的角色,进而以一种动态的劳动价值论表明当代社会经济运行的内在动因[1]2。该书以马克思的“劳动”概念为核心构建了一个哲学空间,将科学知识、技术创新、资本运行纳入其中,完整地阐述了科学技术对经济社会的塑造作用。该书的叙事方式表达了两个理论取向:第一,对科技创新的分析不同于传统技术创新理论仅关注经济“增长”,而是从更为基础的社会分工出发关注经济“发展”;第二,将科学知识的生产还原到马克思的“科学劳动”概念,实际上已经使用了一种扩展了的“科学”概念,蕴含着当代科学知识生产所具有的实践性、情境化、多主体等特征。
该书更为重要的贡献在于讨论了人工智能技术对于社会生产方式的挑战和变革作用。书中提出:“人工智能的替代效应是建立在对人类劳动数据化和逻辑化的基础上的,探索自在自然的创造性劳动是不可数据化和逻辑化的。因此,人工智能只能围绕既有的对象进行重复性生产,替代重复性劳动;而人类则能够探索自在自然,从而摸索新技术、建构新对象,进行创造性劳动。也就是说,机器所不能替代的人类劳动的‘硬核’是探索自在自然的劳动,是创造对象和掌握技术的‘创造性劳动’。”[1]25作者将马克思的“劳动”概念区分为“重复性劳动”和“创造性劳动”,进而指出人工智能是对机器大工业的否定,它将替代人类劳动中可以重复、可以数据化的部分,但创造性劳动是人类劳动的本质,是人工智能所不能替代的。
作者提出:“人工智能可以在将重复性劳动数据化的基础上,对人类劳动进行模仿,从而取代任何形式的重复性劳动。但人工智能却不能取代人类的创造性劳动,创造性劳动是通过探索自在自然,经过反复的摸索与实验、征服反常和偶然、掌握技术、创造对象、实现对象从无到有的过程的劳动,这是一种原生性的劳动。”[1]27作者认为,创造性劳动是对马克思的“自在自然”的探索,“自在自然”是在人类的现有认知能力之外,却以反常和失败等形式向人类显现其自身。然而,在认知实践当中,机器学习已经可以帮助人类探索认知能力之外的“自然”,当然这种“自然”并不以反常或失败的形式存在。作者也指出:“尤其是在大数据和云计算的背景之下,机器学习的速度远超人类的认知极限,甚至可能在数据中找到人尚未发现的方法和规则。”[1]35因此,在认知劳动方面,我们可以在作者的概念框架下进一步区分出人工智能对人类“创造性劳动”的辅助作用,具体表现为三个方面:人工智能提高科学知识生产效率;人工智能擅于提取和传递默会知识;人工智能可以产生某种机器知识。
一、人工智能能够提升科学知识生产效率
机器学习的广泛使用可以提升科学知识生产的效率,主要表现在文献研究和实验室研究两个方面。人工智能系统可以通过自然语言理解获取、阅读和总结所有相关文献。例如,一个叫做Iris的人工智能系统的运行方式是:从某个研究主题的演讲切入,先使用自然语言处理算法分析演講的脚本,挖掘从开放渠道获取的研究文献,然后将相关研究文献分组并进行可视化,再通过人工标注文献使机器匹配精度增加,当机器能够理解文献的内容和结构时,可以帮助科研人员总结出该研究主题下的所有研究问题、假设、实验结果等,从而将前人工作完整呈现。此外,机器学习的使用还能够加快实验研究的进程。例如,2022年5月,澳大利亚国立大学的研究团队使用机器学习重复了物质的玻色—爱因斯坦凝聚态的实验室发现过程,从反复设置调整实验设备的各种参数到产生凝聚态物质,机器学习只用了一个小时,而凭借这一发现获得诺贝尔奖的三位科学家是在直觉的基础上经过多年实验才制造出了物质的凝聚态。由此可见,作为技术的人工智能的进步已经开始反向促进作为基础研究的科学知识的生产。
二、人工智能擅于提取和传递默会知识
波兰尼(MichaelPolyani)提出了默会知识(tacitknowledge)的概念,以区别于可以明述的知识(explicitknowledge),明述知识是用语言文字来表达的知识,如科学知识,默会知识则是我们知道但通常不加言述或者不能充分言述的知识[2]。默会知识具有以下几个特点:难以用语言文字描述,不易传播、记录和积累;获取默会知识主要依靠亲身体验;默会知识呈分布式存在,难以整合。这些特点导致我们很难有效运用默会知识,而机器学习的大规模运用使得人工智能系统非常擅于处理默会知识。作者敏锐地意识到了这一特点——“以往我们所说的‘默会知识’、手工技艺技巧,以及复杂程度远超人类认知能力之外的一些潜在规则,也都不再是一个个‘黑箱’,机器可以基于将人类劳动的过程还原成物理量和数据,再通过机器学习找到其内在的规律,从而取代人类劳动。”[1]56
在当前人类社会所有已经产生的信息中,文字只占极少的比例,大量的信息以图片和视频方式呈现,其中蕴含了大量需要通过亲身体验才能获取的默会知识。如果有办法将事物状态用图片或视频记录下来,就有可能使用机器学习从中萃取出知识。很多电影公司已经使用人工智能系统观看大量人类历史上的影视作品,从而归纳提取出经典桥段,创作出新的配乐、台词和预告片以供人类借鉴。更为重要的是,由人工智能系统获取的默会知识是以神经网络参数集的形式存在的,这对人类而言仍然不可描述,也难以在人类之间传递,但却非常易于在人工智能系统间传播。例如,一台掌握驾驶技能的自动驾驶汽车只要将参数集分享出来就可以快速让所有汽车学会这项技能,而且可以实现机器间的协同行动。
三、人工智能可以产生某种机器知识
如果说默会知识还是“可意会而不可言传”的知识,那么AlphaGoZero在围棋上的表现已经表明人工智能系统产生了某种既无法“意会”也无法“言传”的机器知识。AlphaGoZero在没有人类以往的经验或指导、不提供基本规则以外的任何领域知识的情况下,就使用机器学习在短时间内探索了大量人类从未尝试过的走法。机器发现的知识不仅完全超出了人类的经验,也超出了人类的理性,成为人类几乎无法理解的知识。由此,产生了讨论某种“机器认识论”的可能性,GregoryWheeler在《MachineEpistemologyandBigData》一文中提出:机器学习对事物间隐蔽的相关性的发现和掌握已经远超人类,因此机器知识更多的是一种相关性知识。[3]321董春雨教授在《机器认识论何以可能?》一文中也指出:“人类必须正视机器在其擅长的领域,通过特殊的认识方式所获得和积累的知识。”[4]
机器知识与科学知识或默会知识的核心差别在于:机器知识依赖数据,科学知识或默会知识依赖信息。信息是事物可观察的表征,或者说信息是事物的外在表现。任何一个物体的信息量都非常大,要精确描述一个物体,就需要将其中所有基本粒子的形态以及它们之间的关系都描述出来,同时还要将该物体与周围环境的关系都描述出来。而数据是已经描述出来的部分信息,关于一个物体的数据通常要比信息少得多,例如只包含它的形状、重量、颜色和种属关系等。只有当信息经过适当的处理,当它被用来进行比较、得出结论和建立联系时,它才會转化为知识。而知识可以理解为伴随着经验、判断、直觉和价值的信息,作为认知主体的人在其中扮演了关键角色。
相较之下,机器知识可以被刻画为数据在时空中的关系,这些关系表现为某种模式,对模式的识别就是认知,识别出来的模式就是知识,用模式去预测就是知识的应用。这些数据在时空中的关系只在少数情况下才能用数学工具进行表达,而多数情况下知识表现为数据间的相关性的集合,这些相关性只有一小部分可以被人类感知和理解。这源于人类感受能力的局限性:人类只能感受部分外界信息,人类的感官经验局限在三维的物理空间和一维的时间。因此,当数据无法被感知,它们之间的关系又无法用数学工具表达时,这些数据间的关系就超出了人类的理解能力之外而属于机器知识。当前机器学习的主流形式——人工神经网络的最大特点就是发现并记忆数据中的相关性,例如在看了很多汽车图片后会发现汽车都有四个轮胎,人类对图片这类直观的数据间的相关性也能发现并记忆一部分,这就是默会知识。但当数据量很大且不直观时,例如股票市场的数据或者核电站的内部数据,人类就无法应对了。而随着人工神经网络层级和数量的增加,人工智能系统能够处理大规模的复杂数据,这就是机器知识。机器知识当前的主要表现形式类似于AlphaGoZero中的神经网络的全部参数。
概言之,科学知识和默会知识多是基于信息的因果性知识,而机器知识多是基于数据的相关性知识。此外,科学知识是易于记录、易于陈述、易于传递的;默会知识是难以记录、难以陈述、可传递的;机器知识则是可记录、不可陈述、易于在机器间传递的。
四、人工智能发展的局限性
当然,基于人工神经网络的机器学习仍有两个核心的局限性导致人工智能系统还不足以承担创造性劳动。第一个局限是,人工神经网络需要依赖特定领域的先验知识,也就是需要特定场景下的训练,这是因为人工神经网络的学习本质上是对相关性的记忆,人工神经网络将训练数据中相关性最高的因素作为判断标准。这个问题在自动驾驶汽车中表现的非常突出,鉴于道路交通情境的复杂性和交通标示的多样性,自动驾驶系统难以避免很多交通事故。第二个局限是,人工神经网络无法解释产生某个结果的原因,这种不可解释性在许多涉及安全和公共政策的领域显现的比较突出,例如在智能医疗中,人工神经网络在影像识别和辅助诊断中都对其结果缺乏医学上的解释性,都需要专业医生的复核。
基于人工神经网络的人工智能系统在记忆和识别这两个基础智能方面超越了人类,但在推理、想象等高级智能方面还相差较远。与人类相比,人工智能无法承担创造性劳动的原因还不止于以上的局限性,还包括:人工智能没有常识和物理世界的模型;人工智能没有自主和自发的通用语言能力;人工智能没有想象力,需要大量常识、反事实假设和推理能力;最重要的是人工智能没有自我意识。自我意识的缺乏导致能够产生机器知识的人工智能系统仍然无法被视为认知主体,其知识的“创造性劳动”是一种无意识认识活动。
五、结语
人工智能系统在提升科学知识生产效率、处理默会知识以及产生机器知识方面的优势,使得我们在创造性劳动中很难将其排除在外,未来可能的创造性劳动方式应当是某种人机协作或人机融合。脑机接口(brain-computerinterface)是当前一个重要的人机协作研究方向,而其中最激进的方式是马斯克提出的Neuralink,即通过柔性电极对接在人脑的神经网络上,Neuralink要解决的是人类的信号输入与输出,但其问题在于人类的高级思维(如逻辑推理或描述场景)必须依赖语言,而目前基于人工神经网络的机器学习能力主要是对环境的识别能力,还远没有达到语言和逻辑推理,但人类智能通过语言进行沟通。这背后就隐含了人类的科学知识与人工智能系统的机器知识之间的不可通约,以上例子也表明基于人机协作的创造性劳动还有很大的技术障碍需要克服。
参考文献:
[1]崔政.科学技术知识的政治经济学研究[M].石家庄:河北人民出版社,2022.
[2]郁振华.当代英美认识论的困境及出路——基于默会知识维度[J].中国社会科学,2022(7).
[3]GregoryWheeler.Machineepistemologyandbigdata[A].inMcIntyre,Lee,andAlexRosenberg,eds.TheRoutledgeCompaniontoPhilosophyofSocialScience[C].Taylor&Francis,2022.
[4]董春雨,薛永红.机器认识论何以可能?[J].自然辩证法研究,2022(8).
【篇2】人工智能的利与弊
今天是我学习人工智能的第一堂课,也是我上大学以来第一次接触人工智能这门课,通过老师的讲解,我对人工智能有了一些简单的感性认识,我知道了人工智能从诞生,发展到今天经历一个漫长的过程,许多人为此做出了不懈的努力。我觉得这门课真的是一门富有挑战性的科学,而从事这项工作的人不仅要懂得计算机知识,还必须懂得心理学和哲学。
人工智能在很多领域得到了发展,在我们的日常生活和学习中发挥了重要的作用。如:机器翻译,机器翻译是利用计算机把一种自然语言转变成另一种自然语言的过程,用以完成这一过程的软件系统叫做机器翻译系统。利用这些机器翻译系统我们可以很方便的完成一些语言翻译工作。目前,国内的机器翻译软件有很多,富有代表性意义的当属“金山词霸”,它可以迅速的查询英文单词和词组句子翻译,重要的是它还可以提供发音功能,为用户提供了极大的方便。
通过这堂课,我明白了人工智能发展的历史和所处的地位,它始终处于计算机发展的最前沿。我相信人工智能在不久的将来将会得到更深一步的实现,会创造出一个全新的人工智能世界。
【篇3】人工智能的利与弊
一、 研究领域
在大多数数学科中存在着几个不同的研究领域,每个领域都有着特有的感兴趣的研究课题、研究技术和术语。在人工智能中,这样的领域包括自然语言处理、自动定理证明、自动程序设计、智能检索、智能调度、机器学习、专家系统、机器人学、智能控制、模式识别、视觉系统、神经网络、agent、计算智能、问题求解、人工生命、人工智能方法、程序设计语言等。
在过去50多年里,已经建立了一些具有人工智能的计算机系统;例如,能够求解微分方程的,下棋的,设计分析集成电路的,合成人类自然语言的,检索情报的,诊断疾病以及控制控制太空飞行器、地面移动机器人和水下机器人的具有不同程度人工智能的计算机系统。人工智能是一种外向型的学科,它不但要求研究它的人懂得人工智能的知识,而且要求有比较扎实的数学基础,哲学和生物学基础,只有这样才可能让一台什么也不知道的机器模拟人的思维。因为人工智能的研究领域十分广阔,它总的来说是面向应用的,也就说什么地方有人在工作,它就可以用在什么地方,因为人工智能的最根本目的还是要模拟人类的思维。参照人在各种活动中的功能,我们可以得到人工智能的领域也不过就是代替人的活动而已。哪个领域有人进行的智力活动,哪个领域就是人工智能研究的领域。人工智能就是为了应用机器的长处来帮助人类进行智力活动。人工智能研究的目的就是要模拟人类神经系统的功能。
二、 各领域国内外研究现状(进展成果)
近年来,人工智能的研究和应用出现了许多新的领域,它们是传统人工智能的延伸和扩展。在新世纪开始的时候,这些新研究已引起人们的更密切关注。这些新领域有分布式人工智能与艾真体(agent)、计算智能与进化计算、数据挖掘与知识发现,以及人工生命等。下面逐一加以概略介绍。
1、分布式人工智能与艾真体
分布式人工智能(distributed ai,dai)是分布式计算与人工智能结合的结果。dai系统以鲁棒性作为控制系统质量的标准,并具有互操作性,即不同的异构系统在快速变化的环境中具有交换信息和协同工作的能力。
分布式人工智能的研究目标是要创建一种能够描述自然系统和社会系统的精确概念模型。dai中的智能并非独立存在的概念,只能在团体协作中实现,因而其主要研究问题是各艾真体间的合作与对话,包括分布式问题求解和多艾真体系统(multiagent system,mas)两领域。其中,分布式问题求解把一个具体的求解问题划分为多个相互合作和知识共享的模块或结点。多艾真体系统则研究各艾真体间智能行为的协调,包括规划、知识、技术和动作的协调。这两个研究领域都要研究知识、资源和控制的划分问题,但分布式问题求解往往含有一个全局的概念模型、问题和成功标准,而mas则含有多个局部的概念模型、问题和成功标准。
mas更能体现人类的社会智能,具有更大的灵活性和适应性,更适合开放和动
态的世界环境,因而倍受重视,已成为人工智能以至计算机科学和控制科学与工程的研究热点。当前,艾真体和mas的研究包括理论、体系结构、语言、合作与协调、通讯和交互技术、mas学习和应用等。mas已在自动驾驶、机器人导航、机场管理、电力管理和信息检索等方面获得应用。
2、计算智能与进化计算
计算智能(puting intelligence)涉及神经计算、模糊计算、进化计算等研究领域。其中,神经计算和模糊计算已有较长的研究历史,而进化计算则是较新的研究领域。在此仅对进化计算加以说明。
进化计算(evolutionary putation)是指一类以达尔文进化论为依据来设计、控制和优化人工系统的技术和方法的总称,它包括遗传算法(genetic algorithms)、进化策略(evolutionary strategies)和进化规划(evolutionary programming)。它们遵循相同的指导思想,但彼此存在一定差别。同时,进化计算的研究关注学科的交叉和广泛的应用背景,因而引入了许多新的方法和特征,彼此间难于分类,这些都统称为进化计算方法。目前,进化计算被广泛运用于许多复杂系统的自适应控制和复杂优化问题等研究领域,如并行计算、机器学习、电路设计、神经网络、基于艾真体的仿真、元胞自动机等。
达尔文进化论是一种鲁棒的搜索和优化机制,对计算机科学,特别是对人工智能的发展产生了很大的影响。大多数生物体通过自然选择和有性生殖进行进化。自然选择决定了群体中哪些个体能够生存和繁殖,有性生殖保证了后代基因中的混合和重组。自然选择的原则是适者生存,即物竞天择,优胜劣汰。
直到几年前,遗传算法、进化规划、进化策略三个领域的研究才开始交流,并发现它们的共同理论基础是生物进化论。因此,把这三种方法统称为进化计算,而把相应的算法称为进化算法。
3、数据挖掘与知识发现
知识获取是知识信息处理的关键问题之一。20世纪80年代人们在知识发现方面取得了一定的进展。利用样本,通过归纳学习,或者与神经计算结合起来进行知识获取已有一些试验系统。数据挖掘和知识发现是90年代初期新崛起的一个活跃的研究领域。在数据库基础上实现的知识发现系统,通过综合运用统计学、粗糙集、模糊数学、机器学习和专家系统等多种学习手段和方法,从大量的数据中提炼出抽象的知识,从而揭示出蕴涵在这些数据背后的客观世界的内在联系和本质规律,实现知识的自动获取。这是一个富有挑战性、并具有广阔应用前景的研究课题。
从数据库获取知识,即从数据中挖掘并发现知识,首先要解决被发现知识的表达问题。最好的表达方式是自然语言,因为它是人类的思维和交流语言。知识表示的最根本问题就是如何形成用自然语言表达的概念。
机器知识发现始于1974年,并在此后十年中获得一些进展。这些进展往往与专家系统的知识获取研究有关。到20世纪80年代末,数据挖掘取得突破。越来越多的研究者加入到知识发现和数据挖掘的研究行列。现在,知识发现和数据挖掘已成为人工智能研究的又一热点。
比较成功的知识发现系统有用于超级市场商品数据分析、解释和报告的
coverstory系统,用于概念性数据分析和查寻感兴趣关系的集成化系统explora,交互式大型数据库分析工具kdw,用于自动分析大规模天空观测数据的skicat系统,以及通用的数据库知识发现系统kdd等。
4、人工生命
人工生命(artificial life,alife)的概念是由美国圣菲研究所非线性研究组的兰顿(langton)于1987年提出的,旨在用计算机和精密机械等人工媒介生成或构造出能够表现自然生命系统行为特征的仿真系统或模型系统。自然生命系统行为具有自组织、自复制、自修复等特征以及形成这些特征的混沌动力学、进化和环境适应。
人工生命所研究的人造系统能够演示具有自然生命系统特征的行为,在“生命之所能”(life as it could be)的广阔范围内深入研究“生命之所知”(life as we know it)的实质。只有从“生命之所能”的广泛内容来考察生命,才能真正理解生物的本质。人工生命与生命的形式化基础有关。生物学从问题的顶层开始,把器官、组织、细胞、细胞膜,直到分子,以探索生命的奥秘和机理。人工生命则从问题的底层开始,把器官作为简单机构的宏观群体来考察,自底向上进行综合,把简单的由规则支配的对象构成更大的集合,并在交互作用中研究非线性系统的类似生命的全局动力学特性。
人工生命的理论和方法有别于传统人工智能和神经网络的理论和方法。人工生命把生命现象所体现的自适应机理通过计算机进行仿真,对相关非线性对象进行更真实的动态描述和动态特征研究。
人工生命学科的研究内容包括生命现象的仿生系统、人工建模与仿真、进化动力学、人工生命的计算理论、进化与学习综合系统以及人工生命的应用等。比较典型的人工生命研究有计算机病毒、计算机进程、进化机器人、自催化网络、细胞自动机、人工核苷酸和人工脑等。
三、 学了人工智能课程的收获
(1)了解人工智能的概念和人工智能的发展,了解国际人工智能的主要流派和路线,了解国内人工智能研究的基本情况,熟悉人工智能的研究领域。
(2)较详细地论述知识表示的各种主要方法。重点掌握了状态空间法、问题归约法和谓词逻辑法,熟悉语义网络法,了解知识表示的其他方法,如框架法、剧本法、过程法等。
(3)掌握了盲目搜索和启发式搜索的基本原理和算法,特别是宽度优先搜索、深度优先搜索、等代价搜索、启发式搜索、有序搜索、a*算法等。了解博弈树搜索、遗传算法和模拟退火算法的基本方法。
(4)掌握了消解原理、规则演绎系统和产生式系统的技术、了解不确定性推理、非单调推理的概念。
(5)概括性地了解了人工智能的主要应用领域,如专家系统、机器学习、规划系统、自然语言理解和智能控制等。
(6)基本了解人工智能程序设计的语言和工具。
四、 对人工智能研究的展望
对现代社会的影响有多大?工业领域,尤其是制造业,已成功地使用了人工智能技术,包括智能设计、虚拟制造、在线分析、智能调度、仿真和规划等。金融业,股票商利用智能系统辅助其分析,判断和决策;应用卡欺诈检测系统业已得到普遍应用。人工智能还渗透到人们的日常生活,cad,cam,cai,cap,cims等一系列智能产品给大家带来了极大的方便,它还改变了传统的通信方式,语音拨号,手写短信的智能手机越来越人性化。
人工智能还影响了你们的文化和娱乐生活,引发人们更深层次的精神和哲学层面的思考,从施瓦辛格主演的《终结者》系列,到基努.里维斯主演的《黑客帝国》系列以及斯皮尔伯格导演的《人工智能》,都有意无意的提出了同样的问题:我们应该如何看待人工智能?如何看待具有智能的机器?会不会有一天机器的智能将超过人的智能?问题的答案也许千差万别,我个人认为上述担心不太可能成为现实,因为我们理解人工智能并不是让它取代人类智能,而是让它模拟人类智能,从而更好地为人类服务。
当前人工智能技术发展迅速,新思想,新理论,新技术不断涌现,如模糊技术,模糊--神经网络,遗传算法,进化程序设计,混沌理论,人工生命,计算智能等。以agent概念为基础的分布式人工智能正在异军突起,特别是对于软件的开发,“面向agent技术”将是继“面向对象技术”后的又一突破。从万维网到人工智能的研究正在如火如荼的开展。
五、 对课程的建议
(1) 能够结合现在最新研究成果着重讲解重点知识,以及讲述在一些研究成
果中人工智能那些知识被应用。
(2) 多推荐一些过于人工智能方面的电影,如:《终结者》系列、《黑客帝国》
系列、《人工智能》等,从而增加同学对这门课程学习的兴趣。
(3) 条件允许的话,可以安排一些实验课程,让同学们自己制作一些简单的
作品,增强同学对人工智能的兴趣,加强同学之间的学习。
(4) 课堂上多讲解一些人工智能在各个领域方面的应用,以及着重阐述一些
新的和正在研究的人工智能方法与技术,让同学们可以了解近期发展起来的方法和技术,在讲解时最好多举例,再结合原理进行讲解,更助于同学们对人工智能的理解。
【篇4】人工智能的利与弊
1956年夏,麦卡锡、明斯基等科学家首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。2022年,由于阿尔法狗在围棋人机大战中力压世界冠军,人工智能引起全球的广泛关注。之后因为智能手机上的语音助手、智能机器人等普及,人工智能逐渐走入我们的生活。但这都只是人工智能的“容器”并不是人工智能。
人工智能是对人类智能的模仿,并力图实现某些任务。它是研究用计算机来模拟人类学习、思考、推理等思维活动和智能行为的基本理论、方法和技术。当下已经发展比较成熟的人工智能技术包括图像处理、语音识别以及自然语言处理等领域。
随着科学技术的不断发展,人工智能、大数据等金融科技技术成为各国关注的焦点。目前,包括我国在内的许多国家都将人工智能发展划入到国家长期战略的规划中,力争抢占该领域制高点。当前各行各业都在探索人工智能的种种可能。其中金融领域由于其科技手段应用广泛、信息化建设起步早、新技术投资回报率高等特性,成为人工智能最好的应用领域之一。
近年我国人工智能市场发展非常迅猛,而AI在不同的行业中处于不同的发展阶段,其中金融领域不管是从底层基础设施还是应用成熟度方面都处于领先地位。目前,“AI+”主导的行业智能化提升正处于初级阶段,人工智能在各个行业尤其是金融行业中的应用仍具有极大的深度挖掘空间。
人工智能与金融强势合作
金融科技的重点就是两个:一个是赋能,一个是风控。一方面是注重科学技术在金融领域里面的应用,推动金融业更好地服务实体经济,提高金融产品和金融服务的质量;另一个非常重要的方面就是控制金融风险。
1.人工智能+金融投资与服务
人工智能目前在金融投资领域和服务领域的应用较多。在金融投资领域,人工智能有智能投顾、反欺诈、投资预测等方向的应用。在服务领域,人工智能有身份识别和智能客服等方向的应用。人工智能技术与金融投资和服务领域相结合,助力金融投资与服务的标准化、模型化、智能化,大大升级优化了金融业现有的服务模式,最大限度的保障了消费者的收益要求,减少了金融风险事件的发生,同时降低了人工投入成本,提高了工作效率。
2.人工智能+风控
以“互联网+金融”为代表的金融科技发展阶段更多的属于“渠道革命”,那么新一代的“AI+金融”的影响则包括两方面:产品和风控——让产品更加智能,让风控更加安全。
人工智能由于其具有的技术属性,使之在识别和应对系统性金融风险中更具优势。目前,国际和国内都积极将人工智能应用于风险控制和金融监管上,以期尽可能的降低金融风险、探索更加有效的监管范式。
当前,一些国际监管机构,例如澳大利亚证券及投资委员会(ASIC)、新加坡货币当局(MAS)及美国证券交易委员会(SEC),都在使用人工智能进行可疑交易识别,比如从证据文件中识别和提取利益主体,分析用户的交易轨迹、行为特征和关联信息,更快更准确地打击地下洗钱等犯罪活动。
在国内,人工智能在风控上的应用主要是数据搜集和处理、风险控制和预测模型、信用评级和风险定价以及实现金融监管的实时监控。在风控与管理上,人工智能依托高维度的大数据和人工智能技术对风险进行及时有效的识别、预警、防识,包含数据收集、行为建模、用户画像和风险定价四个流程。开发神经网络、专家系统、支持向量机以及混合智能等人工智能模型应用在金融风险管理领域。在对于金融监管上,人工智能的应用实现了金融监管实时监控,随时暂停。在实际应用中当某些金融机构的金融活动超过监管部门所规定的红线时,人工智能自动连接监管部门的接口便会识别出不符合规定的业务并且在第一时间叫停此项业务,并且生成相关报告以备使用。当被叫停的金融业务指标回归到正常水平时,系统也可以及时取消锁定、恢复业务办理,这样便实现了实时监控。
人工智能的变革和风险
人工智能技术越来越成熟,依托语音识别、机器人技术、机器学习、人脸识别等人工智能技术研究成果开始走向产业端。人工智能应用的三要素:数据、处理数据的能力和商业变现的场景,供应链金融领域已具备人工智能快速发展的必要条件,而事实上,主动拥抱人工智能,拥抱人工智能带来的福利,AI在金融中运用具有广阔的市场空间。
在经历了1990年代和2000年初的寒冬之后,人工智能正在复苏。人工智能的发展在金融业得到了充分证明。作为新兴技术的早期应用者,银行和其他金融服务提供商正在快速拥抱人工智能。
因人工智能的应用,Autonomous预计金融业可节省高达1万亿美元的资金。在金融领域引领人工智能浪潮的是金融科技公司,其中大部分都直接或间接地与金融行业企业合作创建真实的人工智能应用程序。
1、人工智能实现信用风控模型。
人工智能的核心是大数据风控建模能力。传统征信中,数据依赖于银行信贷数据,而大数据并不仅仅包括传统的信贷数据,同时也包括了与消费者还款能力、还款意愿相关的一些描述性风险特征。利用大数据技术,能搜集许多的数据维度来描述,作为风险评估的重要依据。这样就使大数据征信不单一依赖于传统信贷数据,可以对传统征信无法服务的人群进行征信,实现对整个消费者人群的覆盖。
2、人工智能实现风控和反欺诈。
在复杂的市场经济中,核心企业与供应商之间的复杂的贸易关系,存在各种不可控的潜在风险。机器学习里的图谱网络很好地解决了这一诉求,基于申请人、手机号、设备、IP地址等各类信息节点构建庞大网络图,并可在此之上进行基于规则和机器学习的反欺诈模型实时识别。其中一个比较普遍的情况,人工智能可监测相关设备ID在哪些借贷网站上进行了注册、同一设备是否下载多个借贷App,可以实时发现多头贷款的征兆,把风险控制到最低。
从整体氛围来看,金融界对于AI技术还并没有彻底的接受。一方面可能是AI在业界的表现并不算好。它使用更复杂得多的模型,却很难做出更好的效果。另一方面还是风险控制问题。金融业,尤其是量化交易,对风险控制极其严格,对模型最重要的要求是稳健、可解释性强。而AI的风险是很难测量和控制的。
金融中人工智能的下一次迭代
金融中的人工智能是一个广泛且快速发展的趋势。所有这些创业公司中的一个共同点是,他们正在使用人工智能来应对当今金融业所面临的挑战。很明显,人工智能正在帮助简化当前流程并提高效率。
人工智能的下一次迭代将会引入全新的服务和解决方案,从而颠覆当前的金融服务。这种颠覆可能包括彻底消除欺诈(颠覆欺诈跟踪服务),即时信贷(颠覆信用模型服务),自主和个性化财务顾问(颠覆金融咨询服务)等。
普遍认为人工智能有三个发展阶段:计算智能、认知智能和感知智能。第一个阶段是计算智能,能存会算,比如我们现在使用的个人计算机;第二个阶段是认知智能,能说会听、能看会认,能够对各种类型的输入数据进行感知和处理;第三个阶段也是目前的最高阶段,是感知智能,它要求机器或系统能理解会思考,这是人工智能领域正在努力的目标。
目前人工智能在金融行业的应用仅仅停留在算法、数据处理等金融电子化层面(计算智能、认知智能),金融智能化(感知智能)还需要技术更进一步的发展。正如计算机科学家DonaldKnuth所说,“在金融领域的应用主要还是局限于一些认知任务,而对于一些更加复杂的任务,涉及到感知领域的,需要人来进行理解、思考和推理。人工智能已经在几乎所有需要思考的领域超过了人类,但是在那些人类和其它动物不需要思考就能完成的事情上,还差得很远。”
未来展望
在未来几年,预计会有更多初创公司在金融领域推出这些突破性的人工智能应用程序。
AI技术的赋能、全球化企业竞争方式的转变,再加上产业内部转型升级的迫切,新金融无论是在时代发展大势上,还是在社会经济发展驱动上,都将是一项长久不衰的“黄金”产业,毫无疑问,一场掘金新金融盛宴即将到来。得趋势者得天下,未来,中国将成为‘AI+金融’成功落地应用的典型代表。
【篇5】人工智能的利与弊
一、人工智能的定义解读
人工智能(Artificial Intelligence),英文缩写为AI,也称机器智能。“人工智能”一词最初是在1956年的Dartmouth学会上提出的。它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的角度出发,人工智能是研究如何制造智能机器或智能系统来模拟人类智能活动的能力,以延伸人们智能的科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能与人类智能相似的方式做出反应的智能机器。人工智能的发展史是和计算机科学与技术的发展史联系在一起的,目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能在21世纪必将为发展国民经济和改善人类生活做出更大的贡献。
二、人工智能的发展历程
事物的发展都是曲折的,人工智能的发展也是如此。人工智能的发展历程大致可以划分为以下五个阶段:
第一阶段:20世纪50年代,人工智能的兴起和冷落。人工智能概念在1956年首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序、LISP表处理语言等。但是由于消解法推理能力有限以及机器翻译等的失败,使人工智能走入了低谷。这一阶段的特点是重视问题求解的方法,而忽视了知识的重要性。
第二阶段:60年代末到70年代,专家系统出现,使人工智能研究出现新高潮。DENDRAL化学质谱分析系统、MYCIN疾病诊断和治疗系统、PROSPECTIOR探矿系统、Hearsay-II语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969年成立了国际人工智能联合会议(International Joint Conferences onArtificial Intelligence 即IJCAI)。
第三阶段:80年代,随着第五代计算机的研制,人工智能得到了飞速的发展。日本在1982年开始了“第五代计算机研制计划”,即“知识信息处理计算机系统KIPS”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。
第四阶段:80年代末,神经网络飞速发展,。1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。
第五阶段:90年代,人工智能出现新的研究高潮。由于网络技术特别是国际互连网技术的发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。另外,由于Hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。
三、人工智能的多元应用
1、人工智能在管理系统中的应用
人工智能应用于企业管理的意义主要不在于提高效率,而是用计算机实现人们非常需要做,但工业工程信息技术是靠人工却做不了或是很难做到的事情。把人工智能应用于企业管理中,以数据管理和处理为中心,围绕企业的核心业务和主导流程建立若干个主题数据库,而所有的应用系统应该围绕主题数据库来建立和运行。也就是说,将企业各部门的数据进行统一集成管理,搭建人工智能的应用平台,使之成为企业管理与决策中的关键因子,这些正体现了人工智能在企业管理中的巨大价值。
2、人工智能在工程领域中的应用
人工智能在地质勘探、石油化工等工程领域也发挥着非常重要的作用。早在1978年,美国斯坦福国际研究所就研发制成矿藏勘探和评价专家系统“PROSPECTOR”,该系统用于勘探评价、区域资源估值和钻井井位选择等,是工程领域的首个人工智能专家系统,其发现了一个钼矿沉积,价值超过1亿美元。
3、人工智能在技术研究中的应用
人工智能在电子技术领域的应用可谓由来已久。随着网络的迅速发展,网络技术的安全已经成了人们关心的重点,因此必须在传统技术的基础上进行网络安全技术的改进和变更,大力发展数据挖掘技术、人工免疫技术等高效的AI技术,开发更高级的AI通用与专用语言和应用环境以及开发专用机器,而人工智能技术则为其提供了一定的可能。
四、人工智能的未来思考
人工智能的近期研究目标在于建造智能计算机,用以代替人类去从事各种复杂的脑力劳动。正是根据这一近期研究目标,人们才把人工智能理解为计算机科学的一个分支。当然,人工智能还有它的远期研究目标,即探究人类智能和机器智能的基本原理,研究用自动机(automata)模拟人类的思维过程和智能行为。这个长期目标远远超出计算机科学的范畴,几乎涉及自然科学和社会科学的所有学科。如今,人工智能已经进入了21世纪,其必将为发展国民经济和改善人类生活做出更大的贡献。但是,从人工智能目前的发展现状来看,其研究也存在一定的问题,这些主要表现在以下三个方面:
1、宏观与微观隔离
一方面是 哲学、认知科学、思维科学和 心理学等学科所研究的智能层次太高、太抽象;另一方面是人工智能逻辑符号、神经 网络和行为主义所研究的智能层次太低。这两方面之间相距太远,中间还有许多层次尚待研究,目前还无法把宏观与微观有机地结合起来和相互渗透。
2、全局与局部割裂
人工智能是脑系统的整体效应,有着丰富的层次和多个侧面。但是,符号主义只抓住人脑的抽象思维特性;连接主义只模仿人的形象思维特性;行为主义则着眼于人类智能行为特性及其进化过程。这就导致了三者之间存在着明显的局限性。因此,必须从多层次、多因素、多维和全局观点来研究人工智能,才能克服上述局限。
3、理论与实际脱节
大脑的实际 工作,在宏观上已知道不少;但是智能的千姿百态,变幻莫测,复杂的难以理出头绪。在微观上,我们对大脑的工作机制知之甚少,似是而非,这也使我们难以找出规律。在这种背景下提出的各种人工智能理论,只 是部分人的主观猜想,能在某些方面表现出“智能”就已经算是相当的成功。
五、结语
人工智能一直处于 计算机技术的前沿,其研究的理论和发现在很大程度上将决定计算机技术的 发展方向。人工智能研究与 应用虽取得了不少成果,但离全面推广应用还有很大的距离,还有许多问题有待解决,且需要多学科的研究专家共同合作。因此,要想从根本上了解人脑的结构和功能,完成人工智能的研究任务,就必须去寻找和建立更新的人工智能框架和理论体系,进而为人工智能的进一步发展奠定坚实的理论基础。我们坚信在不久的将来,人工智能技术的应用与发展必将会给人们的生活、工作和 教育等带来更大的影响。
【篇6】人工智能的利与弊
【摘要】本文以人工智能为研究主体,探究出其在证券投资领域的应用,来分析证券投资领域人工智能对其的影响。并在人工智能的智能投顾、智能交易和智慧经营等几方面做出概述,最后针对完善人工智能在证券市场的发展基础上提出改善对策,为我国证券市场的持续发展指明方向。
【关键词】人工智能;金融;证券投资;应用分析
一、人工智能+金融在证券投资领域应用的意义
(一)提升工作效率
在风控中,利用用户数据积累和人工智能技术,评估贷款人贷前还款意愿和还款能力,贷中的异常行为监控以及贷后信用评分的评定;在征信中,基于大数据和人工智能技术可以实现智能征信审批,极大地提高工作效率。证券市场借助人工智能技术对贷款人的还款能力提前做出评估,进而针对性的作出评估,风控在证券市场的应用可以极大的对工作效率做出提升。具体表现在以下方面。
第一,人工智能加金融更具智能化,借助智能化工具,可以梳理信息流、社会数据以及各个资金流之间的关联,全面分析金融微观维度,借助智能化项工具,也会第一时间找寻潜在的风险,从而通过跨市场关联探究来强化流动管理,明确风险传播路径,对金融风险进行识别,来提高其具备的系统性。
第二更具合规性。例如人工智+金融可以涵盖现有制定的各项条规、法律、流程文件和内部控制制度,利用时下智能和大数据技术来进行分析对比,提升合规以及适用性,在应用程序编程接口向业务流程进行嵌入,通过对合规成本的降低来提高合规能力。
(二)帮助市场做好投资决策
市场投资决策指的是各个投资主体提前作出论证和调查,为最终的活动投资决策提供参考依据。投资决策在市场活动决策中至关重要,直接决定着企业的未来。有效的做出市场决策可以辅助企业预防风险,未雨绸缪,对应的,错误的投资决策会加大企业面临的金融风险,严重还会影响企业的资金周转。
与此同时,人工智能还具备自动投资能力。华夏基金曾指出“现有机器都具备深度学习能力,克服了人性对恐惧和贪婪的弱点,也不会像人类一样受到外部情绪化的影响”。人工智能机器具备自行交易等优势,会总结之前失败的经验,在顺应科技特征基础上提升自主探究学习的深度和广度,也会收集历史数据,拓宽投资者的交易模型,在互相对抗中提出最优质的交易对策。所以人工智能在市场投资决策上属于良好的辅助工具。
(三)降低人力成本
在大规模知识处理基础下,智能客服衍生而来,它属于一项面向各行各业应用的智能客服,不但可以为企业提供各项管理技术,还能连接企业和用户,创建快捷有效的基于自然语言基础上的技术手段,在为企业提供管理技术的同时,统筹各项分析信息。
在金融或商业活动中生成的大量数据,包括结构化和非结构化数据,必须转换为可读、可见和交互式数据,而非人工智能。人工智能为企业转型和产品创新提供了科学的决策,进而推动了金融智能的发展。目前,智慧投资能力是人工智能在金融投资领域的一项重要成就。智能投资是基于投资组合理论,如资本资产定价模型、套利定价模型等。相关算法用于为具有不同风险偏好的用户提供智能化、自动化的投资组合决策或资产配置建议。招商证券市场的“莫杰智能投资”和工商证券市场的“A1投资”都是在人工智能技术的基础上发展起来的,取得了可喜的成绩。中信证券、海通证券、华泰证券等国内大型证券公司也利用人工智能金融技术的东风,在智能投资顾问领域开展了人工智能定量交易,取得了顯著的成就。
二、人工智能在证券投资市场上存在的问题
(一)人工智能在业务运用方面没有得到实质性的突破
现阶段我国证券投资市场工作的主体依旧是传统业务,人工智能的应用被市场看做是“锦上添花”,或者是没有对人工智能做出一定的关注,究其原因是因为第一,在证券市场内部,传统业务依旧属于主要的业务利润来源,很多工作人员因为受到业绩考核以及外部竞争的压力导致在日常经营中无法兼顾其他;第二是因为人工智能的应用还没有基于风险和成本的角度上做出考量,还比较倾向于待同业取得进步之后再继续跟进。因为以上等因素,使得我国证券市场在人工智能创新上没有取得本质性的突破,无法改变传统的生产形式,由此也会对新技术的应用产生一定的影响。
(二)缺少专业的研发人员
证券市场内部信息技术部门日常的主要职责就是负责内部系统的开发和对人工智能、大数据以及云计算等技术的维护,但是实际发展中这些内部人员缺少对新技术的研发力度,同时内部的信息技术部门人员普遍缺乏对业务的了解,直接导致各大证券市场缺少专业的人工智能改造人员。虽然可以借助技术优势的互联网公司,但是证券市场为了对自身核心内容做出保护,不会将自身业务内容向互联网公司做出告知,一定程度上限制了技术的开发水平。人工智能人才不足,基础层人才储备尤其薄弱,是我国在该领域仍然落后于欧美国家的一个主要原因。
(三)监管体系不完善,存在多种安全隐患
虽然人工智能支撑能力较强,但是也会加大金融局部性风险,例如一些不成熟的人工智能不但会提升系统风险系数,还会对金融市场的稳定和谐造成影响。在证券金融领域,目前对人工智能监管还存在诸多问题,具体体现在:第一,监管的对象过于复杂,无法有效的界定各个责任主体,主要原因是,在人工智能应用阶段中涉及的参与主体较多,不但包含向证券领域提供人工智能技术的部门、应用人工智能机构以及设计人工智能模型以及系统的公司等等。与此同时,人工智能基于深度学习基础上具备自学习的作用,但是因为在技术创建中不够公开透明,所以,我国人工智能证券应用存在问题时,无法第一时间确定各个责任方。虽然在行业中目前已经构建了有效的监管罚则,但是因为没有确定具体的适用条文,基于法律层面也无法界定各个责任方应当承担的责任。
第二,随着近些年金融技术的不断发展,也对目前证券监管队伍提出了更高的标准要求,要求有关监管人员不但要了解人工智能基础知识,明确人工智能系统的运作流程,也要评估人工智能的系统算法,要加深对证券金融领域的认知程度。但是目前我国监管部门有关队伍综合素质还有待加强,在应用中还存在着部分监管人员不清晰人工智能系统算法和基础知识等问题,都对人工智能技术的有效应用造成了危害。
三、完善人工智能在证券领域的应用分析
(一)适当转变经营策略,不断创新适应时代发展
1.开拓新的业务增长点
现阶段证券市场重要的利润增长点就是中间业务,针对我国大部分市场来说,资产负债依旧属于中间业务的重要来源, 证券市场与发达国家的55%相比,我国证券市场中间业务占总收入比较低。基于这一背景,我国证券市场就要提高中间业务的创新力度,借助对托管业务、投资证券市场业务的开展,来进行债卷联合承销模式,更好的对中间业务做出创新。
其次就要实施混业经营。目前混业经营已经成为了世界金融发展下的主要趋势,对于证券市场来说,贷款利息和股权投资收益之间具有较大的差距,这就使得证券市场一定要加快混业经营的开展速率,借助对客户资源渠道优势和证券市场品牌优势的利用,更好的提升证券市场的营业利润。
2.组建大数据库
在当代电子商务市场营销环节,应用大数据已经成为了主要的手段,并且随着信息数据的不断发展,证券市场本身已经构建了资源,规模较大的客户数据信息库。对比于互联网企业具备的优势较多。比如构建大数据库,证券市场的客户在网点进行业务时,大数据库就会将客户有关的职业、身份等信息做出保存,为证券市场预留有效的数据资源,同时也会降低大量的成本。因此,对于证券市场来说,如何总结客户资源、深度挖掘客户信息、在调研客户个性化需求基础上展开产品销售也是未来需要关注的话题。在此背景之下,建议我国证券市场要构建大数据库,来拓宽客户资源,提升业务分析能力,将证券市场具备的服务导向作用充分的发挥出来,融合各项数据信息技术,促进金融市场的不断发展。
(二)加大人工智能专业人才的培养力度
目前,我国还存在着人工智能缺少复合型人才等问题,很多需要的技术人才都需要于外国引进,本国在对高层次人才培养力度有待提升。依据数据显示:全球共计有370所人工智能方向的高校,其中美国有170所,我国仅仅不到30所,而且培养出来的复合型技术人才也无法顺应各个智能企业的需求。
当前属于知识引领的时代,归根结底,各个企业,各个行业竞争的主要需求依旧是人才和技术。在世界领域上,针对人工智能复合型高端人才的战争已经打响,不论是国际领域、互联网高科技企业还是传统行业以及多个高校之间,目前对人才的争夺都非常激烈。对于我国高校来说,如何在之后提高人才培养力度,构建完善的培育机制至关重要,为了促进人工智能+金融的长足发展,我国要在之后加大创新投入的资金和保障,为培养复合型高端人才奠定基础。
(三)推动政府构建行业标准化规范,加强风险防范力度
作为市场的基石,证券市场在之后也要强化和政府之间的沟通力度,和政府部门一起尽快的构建完善规范的金融体制行业标准,在其中融入it审计、评估机制、数据管理以及开发测试等标准内容,帮助金融统计、金融监管以及风险防控部门有标可依。同时,证券市场也要提前对客户实际需求做出调研,结合现实经营现状来开发产品,也要提前评估客户数据,着重分析客户的投资理念、消费理念以及客户资料等,在了解客户实际需求基础上,发展和优化人工智能技术,来为不同客户提供个性化的需求方案。
四、结论
本文以人工智能为主体,通过对现阶段在证券投资市场应用分析,来分析出存在的问题,最后针对性的提出改善对策,本文的第一部分人工智能在证券市场的应用,介紹了带给市场的积极意义;第二部分找寻出人工智能在市场上存在的问题;第三部分针对存在的问题提出完善对策。通过本文的阐述概述出人工智能在证券投资市场上的应用,进而为有关人员提供发展方向。
【篇7】人工智能的利与弊
当前,我国经济发展处于新旧动能转换关键期,人工智能对于我国抢占科技制高点,推动供给侧结构性改革,实现社会生产力新跃升,提高综合国力和国际竞争力具有重要意义。2022年7月,国务院发布了《新一代人工智能发展规划》,提出通过智能金融加快推进金融业智能化升级;通过建立金融大数据系统,提升金融多媒体数据处理与理解能力;创新智能金融产品和服务,发展金融新业态;鼓励金融行业应用智能客服、智能监控等技术和装备,建立金融风险智能预警与防控系统。人工智能将对我国金融业的转型升级、提升竞争力产生深远影响。
人工智能概述
定义
人工智能(ArtificialIntelligence,简称AI)是研究使用计算机模拟、延伸和扩展人的智能的理论、方法和技术的新兴科学。作为计算机科学的重要分支,人工智能发展的主要目标是使计算机能够胜任通常需要人类智能才能完成的复杂工作。
主要技术及应用
人工智能在技术层面主要包括算法和利用算法开发的相关应用。神经网络、遗传算法和隐马尔柯夫链是目前使用较为广泛的算法,建立在上述算法之上的人工智能核心应用技术主要包括深度学习、自然语言处理和计算机视觉。其中,深度学习是人工智能技术的重要领域,旨在建立可以模拟人脑进行分析学习的神经网络,模仿人脑的机制来解释数据。自然语言处理是指让计算机能够听懂、理解人类的语言,主要包括语音识别和语义识别。语音识别是让机器能够“听懂、会说”人类的语言,语义识别是让机器能够理解文字后面的真实内涵。计算机视觉识别技术是人工智能核心技术之一,主要有生物特征识别、物体与场景识别。生物特征识别主要包括人脸识别、指纹识别、虹膜识别等,已广泛应用于金融、安防等领域;物体与场景识别是研究人类如何感知和加工复杂的真实环境信息,主要应用于军事上的武器投射、医疗上的影像扫描辅助诊断及工业上的无人驾驶等领域。
发展历程
按照人工智能的发展程度,大致可分为三个阶段:
第一阶段:计算智能。机器具备像人类一样的记忆能力和计算能力,能够存储和处理海量数据,帮助人类完成大量的存储和复杂的计算,这一步是感知和认知的基础。
第二阶段:感知智能。机器具备像人类一样的感知能力,帮助人类完成“看”和“听”的简单工作。目前人工智能发展正处在感知智能阶段,语音识别、理解和图像识别正在快速发展。
第三阶段:认知智能。机器具备像人类一样的学习和思考能力,能够独自做出决策和采取行动,能够部分或全部替代人类的工作。认知智能是目前机器与人差距最大的领域,也是目前各大科技巨头都在迫切寻找突破的领域。
人工智能的产业链
人工智能的产业链包括基础支撑层、技术应用层和方案集成层。基础支撑层是支撑人工智能运行的基础设施,包括数据采集用的传感器,数据处理用的CPU、GPU等硬件,以及实现人工智能算法等软件。技术应用层是在基础支撑层提供的软硬件基础之上,有针对性开发的技术应用,包括语音识别、自然语言处理、图像识别、预测规划和智能控制等。方案集成层是将不同细分领域的技术应用集成、优化、完善,形成更大领域的综合系统解决方案,比如智慧城市、智慧金融、智慧医疗等。完整集成的智能服务是人工智能未来的发展方向。
人工智能产业发展情况
全球人工智能产业发展情况
据赛迪预计,2022年全球人工智能市场规模将达到2700亿元,年复合增长率达17%。2012年至2022年的5年间,全球人工智能企业新增5254家,是2012年的1.75倍;全球人工智能融资规模约达224亿美元,仅2022年的融资规模就达到92.2亿美元。
从全球范围来看,人工智能领先的国家主要有美国、中国及其他发达国家。截至2022年6月,全球人工智能企业总数达到2542家,其中:美国拥有1078家,占42%;中国其次,拥有592家,占23%。其余872家企业分布在瑞典、新加坡、日本、英国、澳大利亚、以色列、印度等国家。美国在AI产业布局方面全面领先其他国家,在基础层、技术层和应用层,尤其是在算法、芯片和数据等产业核心领域,积累了强大的技术创新优势。
国外科技巨头公司包括谷歌、微软、英特尔、FACEBOOK、IBM等均已经提前布局人工智能产业链。国外科技公司主要聚焦于人工智能基础层,重点研究人工智能的核心算法,并在应用层全面推进人工智能商业化。IBM、谷歌在人工智能核心算法、智能搜索、无人驾驶、医疗诊断等领域率先布局且行业领先;FACEBOOK、微软、苹果侧重于社交应用,重点布局语音识别、图像识别、智能机器人等领域;英伟达、英特尔谋求业务转型,重点研发适合深度学习的AI芯片。
我国人工智能产业发展情况
据报道,2022年中国人工智能市场规模快速增长,全年达239亿元,预计2022年将达到381亿元,复合增长率达26.3%。《新一代人工智能发展规划》预计:我国2022年人工智能核心产业规模超过1500亿元,带动相关产业规模超过1万亿元;2025年核心产业规模超过4000亿元,相关产业规模超过5万亿元;2030年核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。
目前,我国起步较早、技术较为成熟的人工智能技术公司主要以百度、阿里巴巴和腾讯三家互联网企业为代表(以下简称“BAT”)。BAT不仅开展人工智能技术的基础性研究工作,而且本身具备强大的智能金融应用场景,因此处于人工智能金融生态服务的顶端。阿里巴巴旗下的蚂蚁金服在人工智能金融领域的应用最为深化。
蚂蚁金服已将人工智能运用于互联网小贷、保险、征信、智能投顾、客户服务等多个领域。根据蚂蚁金服公布的数据,网商银行在“花呗”与“微贷”业务上,使用机器学习把虚假交易率降低了近10倍;基于深度学习的OCR系统使支付宝证件校核时间从1天缩短到1秒,同时提升了30%的通过率。此外,蚂蚁金服联合华为、三星等共同发起了互联网金融身份认证联盟(IFAA),现已成为国内市场上支持设备与用户最多的互联网金融身份认证行业标准。
除BAT等金融智能生态企业外,一些传统金融机构、金融科技公司在人工智能领域加大投入,在人工智能的垂直细分领域得到了快速发展。
人工智能在金融领域的应用情况
目前,人工智能技术在金融领域应用的范围主要集中在身份识别、量化交易、投资顾问、客服服务、风险管理等方面。
客户身份识别
客户身份识别主要是通过人脸识别、虹膜识别、指纹识别等生物识别技术快速提取客户特征进行高效身份验证的人工智能应用。技术的进步使生物识别技术可广泛应用于银行柜台联网核查、VTM机自助开卡、远程开户、支付结算、反欺诈管理等业务领域中,可提高银行柜台人员约30%的工作效率,缩短客户约40%的平均等待时间。互联网银行已将人脸识别技术视为通过互联网拓展客户的决定性手段;传统金融机构也开始重视人脸识别技术的应用。
智能量化交易
量化交易是指通过对财务数据、交易数据和市场数据进行建模,分析显著特征,利用回归分析等算法制定交易策略。传统的量化交易方法严格遵循基本假设条件,模型是静态的,不适应瞬息万变的市场。人工智能量化交易能够使用机器学习技术进行回测,自动优化模型,自动调整投资策略,在规避市场波动下的非理性选择、防范非系统性风险和获取确定性收益方面更具比较优势,因此在证券投资领域得到快速发展。
智能投顾
智能投顾又称机器人投顾(Robo-Advisor),主要是根据投资者的风险偏好、财务状况与理财目标,运用智能算法及投资组合理论,为用户提供智能化的投资管理服务。智能投顾主要服务于长尾客户,它的应用价值在于可代替或部分替代昂贵的财务顾问人工服务,将投资顾问服务标准化、批量化,降低服务成本,降低财富管理的费率和投资门槛,实现普惠金融。
智能客服
智能客服主要是以语音识别、自然语言理解、知识图谱为技术基础,通过电话、网上、APP、短信、微信等渠道与客户进行语音或文本上的互动交流,理解客户需求,语音回复客户提出的业务咨询,并能根据客户语音导航至指定业务模块。智能客服为广大长尾客户提供了更为便捷和个性化的服务,在降低人工服务压力和运营成本的同时进一步增强了用户体验。
征信反欺诈
知识图谱、深度学习等技术应用于征信反欺诈领域,其模式是将不同来源的结构化和非结构化大数据整合在一起,分析诸如企业上下游、合作对手、竞争对手、母子公司、投资等关系数据,使用知识图谱等技术可大规模监测其中存在的不一致性,发现可能存在的欺诈疑点。
信贷决策
在信用风险管理方面,利用“大数据+人工智能技术”建立的信用评估模型,关联知识图谱可以建立精准的用户画像,支持信贷审批人员在履约能力和履约意愿等方面对用户进行综合评定,提高风险管控能力。
主要问题和政策建议
主要问题
智能金融的应用领域有限。目前人工智能已在身份识别、智能客服、量化分析等金融领域取得了一定进展,但除人脸识别技术成熟度较高,具备大范围推广使用条件之外,其他应用还比较单一、行业大规模应用尚需时日。德勤发布的《银行业的AI数字化银行报告》显示,只有15%的金融机构在使用AI与同行竞争,银行业对AI的部署远远落后于其他行业。
计算机处理能力不足。金融行业是智力密集型行业,人工智能在金融行业的模型算法非常复杂,数据训练工作量很大。主流的深度神经网络算法要求计算机具备先进的半导体、微处理器和高性能计算技术,能够并发处理超大规模数据,目前的计算机处理能力虽有长足进步,但应付复杂人工智能应用仍有待提高。尤其是我国人工智能的硬件GPU依赖进口,不仅成本高,还面临着发达国家的贸易壁垒。
金融数据共享性不足。机器学习是人工智能的核心技术,需要依靠大量数据训练,训练的准确性与数据量成正比。金融行业的数据积累量较大,但除公开的金融市场交易数据外,各家金融机构出于金融数据安全考虑,很难主动向金融科技公司开放其内部海量数据,在一定程度上制约了人工智能在金融领域的创新应用。
政策建议
加强智能金融产业创新体系建设,加快推动应用创新。未来可考虑设立一些国家级智能金融创新中心和重点实验室,加强智能金融标准化工作,研究专利合作授权机制和风险防控机制;推动智能感知、模式识别、智能分析、智能控制等智能技术在智能金融领域的深入应用;促进传统金融机构加大对智能金融的投入,提升人工智能技术创新和应用水平。
加快智能金融关键技术研发,夯实基础产业能力。加快研发深度学习、增强学习、迁移学习等基础算法;加强计算机视听觉、生物特征识别、自然语言理解、机器翻译、智能决策控制等共性技术的研发;加快发展面向智能金融的计算芯片、智能传感器、操作系统、存储系统、中间件、重点设备等基础软硬件、开发平台;研发下一代通信网络、物联网、网络安全等关键网络支撑技术。
加快智能金融大数据基础设施建设。可考虑由监管部门牵头,协调各方利益,逐步推动建立智能金融大数据系统,为将来人工智能在金融领域的应用推广夯实数据基础。
加强智能金融领域的法规政策研究。与其他新技术一样,人工智能技术也是一把“双刃剑”,在促进经济社会发展的同时,也可能带来改变就业结构、冲击法律与社会伦理、侵犯个人隐私、挑战国际关系准则等问题。在大力发展智能金融的同时,必须高度重视可能带来的安全风险挑战,加强前瞻预防与约束引导,最大限度地降低风险,确保智能金融走上安全、可靠、可控的发展轨道。未来须围绕人工智能在金融领域的应用可能遇到的法律法规问题开展前瞻性研究,为新技术的快速应用奠定法律基础。加强人工智能在金融领域的应用带来的合法合规性问题的研究。
【篇8】人工智能的利与弊
我学习人工智能已经快一年的时间,有许多心得可以和大家分享一下。人工智能,英文是Artificial Intelligence,简称AI。人工智能,最早是由著名计算机科学家图灵在20世纪50年代提出的,就是著名的“图灵测试”。最近几年,随着深度学习发展,人工智能被运用在各行各业,因此有人把人工智能称为第四次科技革命,他将给人们的生活带来翻天覆地的变化。
人工智能怎么学习呢?
1.AI的基础是数据,是对数据进行挖掘、训练和应用。所以基础中的基础是数学,你得要先掌握高等数学、线性代数、概率论和数理统计等相关知识。
2.学习Python语言。Python最近几年非常火,学习的人非常多,甚至有些地区小学也开设这门课。为什么Python会迅速传红呢?首先,Python编程的代码量只有Java的1/5不到,简单易学。其次,Python的功能强大,写爬虫、游戏开发、自动化运维、机器学习和人工智能领域。最后,Python拥有丰富强大的库,如前端开发的Flask和Django、图形界面的tkInter、矩阵计算numpy、绘图的matplotlib等等。
3.学习各类机器学习和算法模型。这其中主要包含监督学习和非监督学习,监督学习中有:线性回归、逻辑回归、随机森林、SVM、决策树、等。非监督学习有:聚类、KMeans、DBscan等。
4.深度学习可以说是AI的精髓。深度学习主要流行的框架有:Tensorflow、Caffe、MXNet、Keras、Pytorch等。
我觉得自学,还是非常费劲的,效果不一定好,最好有老师指导,否则进展很慢,可以先跟教学视频学习,看书实操,做一些具体的项目等。
【篇9】人工智能的利与弊
人工智能现状和发展
摘要:人工智能属于一门综合性的边缘学科。诞生时间为 20 世纪 50 年代左右,大概历经了四个时代,第一个时代为神经网络时代,第二个时代为弱方法时代,第三个时代为知识工程时代第四个时代为知识工业时代。它在发展过程中包含的基础有计算机科学,信息论,神经心理学,哲学,统计学等多种学科。至今为止,人工神经网络技术和遗传算法都已经应用于工业,军事等领域。
关键词:人工智能发展;识别率;人脸识别;遗传算法
1 智能计算机的发展
1.1人工智能简述
人工智能[1](Artificial Intelligence,简称AI)是计算机学科的一个分支,属于为世界三大尖端技术空间技术、能源技术、人工智能其中之一,最近几十年来,人工智能的发展非常的迅速, 在很多的地方都得到了应用,尤其是在科学领域。
人工智能源自于对人的模仿,其最终目的是服务于人类,但是,就像世界上没有相同的两片叶子,也没有完全相同的两个人,也就像没有一家服务企业可以满足一个国家人的所有要求一样,人工智能产业中也会涌现许多实力强大的企业,一些企业也会在某个领域内形成自己的竞争优势,甚至会出现垄断型企业。人工智能产业在国内外都还是处于刚刚发展阶段,人工智能产业的竞争也会伴随不断增长变化的需求而演化,企业也会为了满足并提升社会大众越来的生活品质而不断进步,不断完善自身。
1.2人工智能研究的发展概况
未来,随着计算机和其他科学技术的不断进步,人工智能的发展也将要不断面对越来越多的艰难挑战。在我们的日常生活中,人们对人工智能技术的期望一直都拥有着很高的热情和期盼,但是,在客观事实上,人工智能技术进步不但要考虑软件、硬件技术的限制,也还要考虑人们对自身能力理解程度的制约,因此未来人工智能技术将在不断限制的过程中不断突破不断成长,从而保持着逐步的发展。比如人脸识别技术,当该技术以一次问世时,人们对人工智能充满了信心,但当大多数人亲自使用时,却发现它对人脸的识别率还是不够高;
近年来,人脸识别技术得益于机器学习与大数据,又有了非常令人欣喜的进步,拥有足够的多的人力模型数据,计算机对具体提供的数量足够多的人脸模型数据进行针对性训练,就可以达到一个极高的识别正确率。但是对一个具体的个例可以做到百分百识别,并不能就此完全肯定对人群大众使用就都能达到同样级别的水平,对于大量的人脸数据依然需要不断地整理系统的统计,所以,距离完美的识别率人类还有很长的路要走。不仅是人脸识别,OCR、语音识别、机器翻译等人工智能技术在现实的应用中都会面临准确率的标准。也希望无论是企业还是社会群体大众,用一份积极包容的心态,为人工智能产业的发展营造一个优良的可持续发展环境。
人工智能应用研究有许许多多的可行性。专家系统内部含有大量的某个领域的专家水平的知识与经验,经过运用人类的知识和解决问题的途径进行推理、汇总、判断、解决,来处理某个领域的疑难棘手问题。人工智能系统在很多领域的应用也都在促进着人工智能的理论和技术的不断发展。专家系统也是人工智能应用研究最活跃和最广泛的应用领域之一,涉及社会各个方面,各种专家系统已遍布各个专业领域,取得很大的成功。人工智能在计算机领域内,得到了原来越多的重视。并在机器人等中得到了很多的实际应用。
人工智能是研究人类智能活动的可循规律,创建具有一定人类智能的电子系统,它主要是通过让计算机去完成原本是需要人类智慧才能去解决的问题,换而言之,就是研究如何应用计算机的软硬件来模拟人类智慧行为的基本理论、方法和技术。例如:繁重的科学工程和数学计算本来是要人脑来承担的,但是,现今,计算机不但能高效准确的完成这种计算,而且还能够比人脑做得更加的完美,因此,当今社会也不再把这种程度的计算看成是“需要人类智慧高强度才能完成的复杂任务”,由此可见,高强度复杂工作的定义随着人类社会时代的发展和科学技术的不断进步而不断变化,人工智能这门科学的具体目标也自然随着社会科学的变化而发展。它一方面不断地通过科学技术获得新的进展,另一方面又勇敢的转向更有意义、更加困难的目标。
2 人工智能的前沿
2.1智能信息检索技术
现今社会,智能信息检索技术的发展日新月异。而人工智能在信息检索技术中的应用,主要集中表现在网络信息的检索。网络信息检索,也即网络信息搜索,是指互联网用户在网络终端,通过特定的网络搜索工具或是通过浏览的方式,查找并获取信息的行为。运用人工智能技术,可以快速准确的在大数据的基础之上获得所需信息。
2.2遗传算法
遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程进行搜索找出最优解的方法。遗传算法是通过一类问题可能潜在的解集的其中一个集群开始的,而一个集群群则由经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有本身特征的实体。比如,它决定了个体所要表现出的外部形状,如单眼皮,双眼皮的特征是由染色体中控制这一特征的某种基因组合决定的。由此可见,从一开始通过表象得到实际的基因的编码程序为一种算法。我们通常将基因的编码工作简单化 ,如二进制编码,在第一代种群产生之后,遵循适者生存,按照自然法则优胜劣汰,选择最优的结果,并借助交叉和变异,得到一种新的集合。这种办法会得到一种比以前更加优秀,更加适者生存的种群。
3 结束语
人工智能对人类科学来说是一门极富挑战性的科研究,想要从事这项研究工作必须懂得计算机知识,心理学、统计学、哲学等等。人工智能是一种涵盖了非常广泛的知识的科学,它包含了很多不同的领域,如机器学习,计算机视觉、软件工程、操作系统等等,总而言之,人类科学对人工智能研究的一个主要目的是使机器通过一系列的操作能够胜任一些通常需要人类智能才能完成的复杂工作。在不同的时代、不同的社会环境、不同的人对这种“复杂”程度的理解是不一样的,每个时代的科学发展也是不同的,希望在科学不断发展的今天,人工智能的发展也会带来许许多多的惊喜。
参考文献:
[1] 元慧.议当代人工智能的应用领域和发展状况[J].福建电脑,2008(9).
[2] 刘玉然.谈谈人工智能在企业管理中的应用[J].价值工程,2022(9).
[3] 焦加麟,徐良贤,戴克昌.人工智能在智能教学系统中的应用[J].计算机仿真,2022(7).
[4] 周明正.人工智能在医学专家系统中的应用[J].科技信息,2022(7).
[5] 张海燕,刘镇清.人工智能及其在超声无损检测中的应用[J].无损检测,2011(5).
[6] 马秀荣,王化宇.简述人工智能技术在网络安全管理中的应用[J].呼伦贝尔学院学报,2022(7).
[7] 曾雪峰.论人工智能的研究与发展[J].现代商贸工业,2009(8).
[8] 王梓坤.论混沌与随机.北京师范大学学报,1994,30(2):199-202.
[9] 陈明.基于进化遗传算法的优化计算[J].软件学报,2008,9(11):876-879.
[10] 陈火旺.遗传程序设计(之一)[J].计算机科学,2005.22(6):12-15.
【篇10】人工智能的利与弊
[摘要]经济全球化形势下,英语教学需求增长,尤其对于高校教育机构而言,传统英语教学模式的局限性弊端已逐渐显露,新型教学技术的引入与应用成为大势所趋。人工智能技术作为现代科技的重要产物,于近年来开始被尝试应用于教学工作当中,在语言类教学课堂中发挥着尤为重要的辅助作用。基于高校英语教学的现实需求,如何构建有益于提升教学实效性的教学模式,并由此实现人工智能技术在英语教学课堂中的有效利用,成为亟待解决的关键问题。现由人工智能视野出发,尝试在高校英语教学中拟建混合式课堂,以期实现教学效率及质量的优化。
[关键词]人工智能;高校英语;混合式教学;构建策略
从高校教育阶段的英语教学目的来看,其核心主要在于语言应用能力的培养,要达成这一目标,仅仅依靠单一的课堂内教学远远不够,在缺乏课外训练的情况下容易导致学生出现语义理解、口语表达方面的短板,不利于全面应用能力的构建。因此,以“线上+线下”为特征的混合式教学模式在高校英语课堂逐渐兴起,在很大程度上弥补了以往单一性教学模式的不足,也更有利于为人工智能等现代教学技术的引入与应用扩大空间。但由于长期受传统教学模式影响,人工智能与混合式教学模式在高校英语课堂中的融合构建容易受阻,需要以科学合理的策略加以推进,现提出相应方案。
一、人工智能与混合式教学模式的相关理论概述
(一)人工智能的概念及主要功能人工智能技术是建立在计算机信息处理基础上的一种智能化技术,能够对人类行为逻辑、方式及习惯做出相应的解析与模仿,使机器的运作能够在智能程序的驱使下更贴合人类的交互需求[1]。基于这一应用方向,人工智能技术主要由理论研究与工程研究两个方面共同推进完整体系的构建,其中,理论研究工作旨在为后续工程研究的实践奠定基础,重点一般放在对现有技术经验的总结探索、对相关理论体系的整合提炼等方向;工程研究工作则旨在利用现有人工智能技术独立完成产品的开发与设计,重点一般放在人工智能系统与设备的应用、新产品的研发实验与调整改进等。从人工智能目前的主要功能来看,大致可分为以下三类:一是通过智能系统完成信息的存储、提取及内部处理;二是通过智能化能力完成信息的符号化处理;三是建立与人类行为逻辑相近的程序逻辑,并利用这一能力对人类提出的问题予以解答或处理[2]。从语言学习的视角来看,人工智能的功能呈现更为具体,如语言解析技术、语言识别技术、语言翻译技术等均较为常见,随着人工智能普及率的增长,这些技术在语言教学课堂中的利用也更为广泛,且目前仍处于不断升级的进程当中,为语言教育方式的革新转变带来了巨大的契机。
(二)混合式教学模式的应用价值结合混合式教学模式在高校英语教学中的应用现状来看,其教学价值大致体现在以下两个方面:一是优势整合价值。语言学习中,传统课堂与网络信息课堂所能够提供的支持效果各不相同,且各有优势与短板。通过应用混合式教学模式能够有效提取并整合两种教学状态下的主要优势,使其相互补充、相互作用,进而发挥“1+1>2”的更优教学效果。二是范围拓展价值。语言类科目不仅对基础知识体系具有较高要求,同时也有着明显的实践需求,而单一的课堂教学模式很难将教学范围进行有效拓展[3]。在混合式教学模式支持下,这一问题得以解决,通过利用庞大的线上资源来突破线下教学范围的局限性,能够达到开辟新渠道、巩固认知结构的教学目的,有助于为学生跨文化交际能力的提升奠定基础。三是推进教学改革。混合式教学模式的深入开展,有助于实现教学方式的多元化和丰富性。充分借助于线上教学与线下教学的优势,综合运用多样化的教学手段,根据不同教学内容的要求来选择合适的混合式教学手法,这不仅可以为学生的学习活动提供良好的支持,同时还有助于调节课堂教学氛围,让教学实效性得以大大增强。
二、人工智能视野下高校英语混合式教学模式的应用路径
(一)听力训练———应用语料库完成自动化资源匹配及交互听力训练属于英语教学中的基础性部分,对于学生英语应用能力的构建有着决定性影响,且听力资源的广度及与学习需求的匹配度在很大程度上决定着学习效果。因此,在构建高校英语混合式教学模式时,可将人工智能技术作为打开听力训练资源广度的关键渠道,借助其特有的语料库储备来完成自动化匹配、交互,使学生能够快速在庞大的英语听力素材中获取与自身学习需求相符的听力资料,并根据资料内容,与人工智能设备展开具有针对性的自动化练习[4]。首先,学生可在线上人工智能系统中录入自己的年龄、学段、英语听力基础、重点训练方向等基本资料,由系统根据数据资料自动筛选、匹配相应的听力材料,从而省略手动搜集资料的繁琐工序。另外,为进一步增强线下课堂学习与情境的交互性,还可进一步利用人工智能的自动识别功能,由学生根据学习需求,随机选取某物体进行扫描,再由系统根据识别出的物品类别筛选出相关的听力练习资料,使学生能够在自动且随机的语言场景中获得更良好的学习体验。例如,当学生选择“手机”这一物品进行识别后,语料库便可自动筛选出与“手机”有关的听力材料,整理出类似主题:Therelevanceofmobilephonesandmodernlife,学生再根据听力内容展开自主练习,从而规避千篇一律的重复训练。
(二)写作指导———应用自动批改功能完成查漏补缺英语教学中,写作是用于锻炼学生词句表述水平、语法运用水平的重要环节,但传统英语写作教学课堂常受困于题材范围狭窄、批改过于主观等因素,既不利于学生创造能力的发挥,也容易导致学生对于自身英语写作的优缺点难以客观把握[5]。因此,在利用人工智能技术展开英语写作指导时,同样可由线上、线下两个不同角度出发,分别借助框架搭建功能与自动批改功能完成的自我审视与查漏补缺,进一步夯实英语书面表述能力。线上教学中,首先可由教师向学生布置以某一话题或某一词汇为主题的写作任务,如“Economicglobalization”,学生根据自身思路,在人工智能技术支持下的作文系统中进行写作,系统则由此发挥框架搭建功能,结合主题与基本思路提供大致的框架模板,以及用作参考的相关词汇、句式,使学生能够跟随框架的指导,形成更为清晰的写作逻辑链条,达到深化表达的训练目的。线下教学中,首先可针对经过系统自动批改后的写作内容与批改意见进行回顾,找出系统评测下的亮点与不足所在,梳理出写作过程中的存疑之处,通过与他人交流和询问教师的形式找出解决办法,并于课堂上完成习作修改,最后由教师根据写作主题,给出主观意见,从而达到主客观相结合的综合评定目的,使反馈成果更具辅助改进意义。
(三)翻译练习———应用云平台技术实现重难点突破英语翻译是以足够的词句积累、听力练习为基础的语言转换过程,对于学习者的语法运用水平、实时解析能力、组织表达能力都具有较高要求,因此学习过程中的重、难点也相对更多,如何提高翻译精准性成为教学过程中的重要问题[6]。人工智能支持下的云平台应用能够为英语翻译教学带来新的渠道,一方面可通过创设翻译情境来使学生快速投入到语言环境当中,另一方面也可透过知识模块拆分功能来理顺语句间的联系,从而使得翻译精确性提升。首先,可在线下课堂当中借助人工智能技术来营造身临其境的语言氛围,如通过追踪文本内容,自动化匹配并呈现与之相关的场景,给人以身临其境之感,如在进行“Foratime,theweatherchangedsud-denly,heavyrainandthunder,pedestriansontheroadwerelookingforeavestoavoid.”一句的翻译时,系统可自动提取“Thunderstorm”这一关键词,并在设备中播放关于“暴雨雷鸣”的音像,将学生引入语言情境当中[7]。在情景背景下完成翻译练习后,学生可各自将翻译成果上传至线上云平台,由云平台根据翻译内容,出具动态的评价链条,对翻译结果进行量化评定,使学生更快地从中厘清重点、难点,并结合不同的知识模块展开针对性补充练习。
(四)口语对话———应用人工智能机器人展开一对一对话高校教育阶段,英语教学的最终诉求在于实际语言应用能力的构建,因此,口语对话练习成为贯穿教学始终的必要环节,关系着学生最终能否将课堂学习成果转化为语言应用基础。人工智能技术的出现,在很大程度上打破了以往英语课堂中对话组织困难的僵局,学生可通过与人工智能机器人建立起一对一的对话关系,来解决师资有限而同学指导能力不足的问题,同时取得训练成效与查漏补缺成效。学生在进行线上自主练习时,可根据想要练习的方向设置关键词或主题,再将人工智能机器人作为对话对象,围绕主题展开聊天式对话,从而达到口语训练目的,同时还可避免与真人对话时羞于启齿的情况,有助于在放松状态下激发出更良好的表达水平[8]。线下课堂教学中,同样可利用人工智能机器人来催化练习效果,例如,在组织小组口语练习时,为避免话题匮乏、接话困难的情况,可利用智能机器人来提供一些固定的框架或句式搭配,并根据不同成员的薄弱点,对对话的层级与难度进行适当智能化调整,从而实现对话练习效果的提升。
三、人工智能视野下完善高校英语混合式教学模式的主要策略
(一)完善教学管理系统,拓宽混合式教学范围无论是人工智能技术还是混合式教学模式的利用,都需要以完善的教学管理系统作为依托,才能够最大限度发挥其价值与成效,真正在教育工作中起到支持作用。因此,在构建高校英语混合式教学模式的同时,还需要紧密结合内部教学需求与教学现状,组织校内各部门共同参与到教学管理工作中来,积极发挥监督与合作职能,在寻求改革发展契机的同时进一步拓宽混合式教学的应用范围[9]。一方面,打造以融入人工智能技术为核心的混合式教学方案,将其应用于英语教学工作当中,动态化观察各阶段教学成果,并用作后期修改教学管理方向的依据,同时积极举办教学比赛及教学研讨会议,以便及时发现方案中的问题所在;另一方面,将混合教学范围逐步扩大,如尝试通过校外拓展实践来探索人工智能的新应用渠道,同时建立综合线上、线下两个教学环节评价指标的教学反馈体系,以便于及时由反馈体系当中获取新的教学动向,并由此探索更利于发展的新模式。可以说,人工智能背景下的英语混合式教学,是以完善的教学管理系统为先导的,必须要不断地对教学管理系统进行完善,有效地拓展并延伸混合教学范围,才能够最大化地提升混合式英语教学的实际意义,真正促进教学质量的提升,为学生的成长和发展奠定坚实的基础。
(二)优化课件制作体系,突出合作互动功能除混合式教学方法的应用外,英语教学课件的制作也直接影响着最终教学成效。为突出人工智能技术的教学优势,在后期英语混合式教学课件的制作中,可进一步强调学习过程中的合作与互动,通过留置更大的交互空间来激发个体的主观能动性,从而达到强化训练效果的目的。一方面,高校可组建精于网课制作的教师队伍,在分析人工智能教学数据、总结以往经验的基础上,尽可能地丰富素材、去粗取精,使学生在线上学习中获得更优体验;积极打造线上精品网课,带给学生专业化的网络课程内容,使之可以从中收获知识的积累和能力的提升,此外还可以将精品网课作为范本在其他高校进行推广,这既可以进行课程推广还能够实现学术交流,以此来更好地强化课件制作效果;另一方面,在线下课件的制作中,更多地增加由学生作为主导的实践板块,如互动对话环节、实时翻译环节等,从根源上提高学生在混合式课堂中的参与度[10]。总而言之,在人工智能背景下,积极开展英语混合式教学,必须要以优质课件制作体系为先导,以课件优势来促进学生对于知识的吸收,这样有助于最大化发挥混合式英语教学的意义,强化教学实效性。
(三)重建教学评价制度,设置多元考核指标在混合式教学模式践行基础上,可通过重建教学评价制度、设置多元化考核指标来进一步倒逼教学质量的提升。例如,除了平时表现,期末考试成绩作为基础考核以外,可另外增加线上教学评价板块,即将学生在线资源学习情况、线上线下课堂活跃度以及师生互动情况等都纳入评价考核范围。借助人工智能技术及网络平台,将学生的学习情况细化为多个考核内容,如听、说、读、写能力的构建情况等,从而保证考核结果更加公正、有效,能够真实反映学生的学习情况以及英语应用水平,并帮助学生完成针对性改进。此外,为了进一步延伸教学评价效果,可以通过线上师生互评、学生互评、小组评价、学生自我评价等方式来实施多元化评价,这样通过多维度、多元化的混合式评价,有助于实现最真实、最客观、最全面的教学评价,能够全面衡量教学质量和教学效果,以便于为后续的教学改进创造基础。
参考文献:
[1]刘凡.高校英语教学线上+线下混合式模式的构建研究[J].吉林广播电视大学学报,2022(9):62-63.
[2]安琦.民族高校英语专业课程混合式教学模式初探———以内蒙古民族大学为例[J].民族高等教育研究,2022,7(5):90-92.
[3]郭玺平.混合式教学模式下的高校英语演讲课程设计与实践———以内蒙古师范大学为例[J].内蒙古师范大学学报(教育科学版),2022,31(3):87-90.
[4]陈洁.混合式教学法在高校英语专业《基础英语》课程中的应用[J].黑河学院学报,2022,11(2):107-109.
[5]贺红艳.混合式教学模式下课堂评价体系改革对高校英语教师评价素养的挑战[J].国际公关,2022(5):41-42.
[6]毛为慧,余庆泽.基于AI语音识别平台的英语混合式教学模式探讨[J].河南教育(职成教),2022(3):28-30.
[7]王艳红.人工智能背景下英语写作教学中混合式教学模式的应用[J].西部素质教育,2022,6(12):122-123.
[8]阚常娟.多模态视域下的英语教学云平台建设研究[J].江西电力职业技术学院学报,2022,33(3):37-38.
[9]王璐.浅议人工智能背景下的大学英语口语教学与评价[C].外语教育与翻译发展创新研究(第九卷).四川西部文献编译研究中心,2022:44-46.
[10]季燕.5G+人工智能视角下的英语教学创新探索[J].创新创业理论研究与实践,2022,3(7):67-68.
作者:王欣 单位:陕西警官职业学院
【篇11】人工智能的利与弊
2022年10月,全球最大代工厂富士康“机器换人”计划加速,每年有上万机器人投入使用,其江苏昆山市的工厂已裁减6万员工。正在举行的全国两会上,一些代表委员对有着近3亿人的农民工群体未来的走向,不无担忧。他们提醒说,“机器换人”,可能会导致农民工未来的就业压力不断加大。(2022/3/10《工人日报》)
人类进入信息化时代,随之而来的将是智能化时代,或者称着机器人时代。目前“机器换人”计划加速,大量的机器人投入使用,让人们从脏、热、累、有毒有害、机械重复的工作中解放出来,将使生产效率和产品质量大大提高,同时能大幅降低生产成本,带来社会的进步。中国制造正在向中高端迈进,只有接纳机器人,才能提高企业和产品的国际竞争力。机器人时代不论你喜欢不喜欢都将如期而至。
“机器换人”来了,预示着一场工业革命已经来临,生产方式、企业管理和用工制度等都将发生一系列的变化,一些企业因为引入机器人而不得不大量裁员,一部分工人特别是农民工因此失去工作的机会,一些年龄大的农民工要想再就业就比较困难,一旦失去工作机会也将丢掉手中的饭碗。
“机器换人”来了,喜忧参半。要有忧患意识,要有危机感,紧迫感,早做安排,提前做好准备。在今年的两会上,全国人大财政经济委员会副主任委员辜胜阻给出细致的建议,要在普惠性前提下,为农民工提供一个有弹性、多层次、多选择、多模式的持续进修机制。即政府和企业要为农民工提供进修培训的机会,掌握一定的职业技能,以应对新的就业市场。
全国人大代表曹晶认为,应当从职业学校到企业打造出一条终身学习提升的通道,或出台技能津贴指导意见,督促人社部门和企业共同落实。同时,通过立法确定企业必须承担职业教育的义务。教育和培训不可能是一步到位,“授人以鱼不如授人以渔。”以终身学习适应万变的社会和就业市场。
机器人来了,政府和企业要加大职工培训的力度,职工自身也必须自我加压,积极参与学习和培训,学到一技之长,学到再就业的本领,不会因为企业裁员而失去工作的机会。机器人来了,用工总量或会减少,政府和企业还应拓宽就业渠道,增加就业岗位保就业,同时完善失业保险制度。个人也应积极主动创造劳动机会。就业是最大的民生,失去就业机会也将无法保证生活质量。机器人来了,不可以坐等,要积极应对。
【篇12】人工智能的利与弊
通过这学期的学习,我对人工智能有了一定的感性认识,个人觉得人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。 人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。关于什么是“智能”,就问题多多了。这涉及到其它诸如意识、自我、思维等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。关于人工智能一个大家比较容易接受的定义是这样的: 人工智能是人造的智能,是计算机科学、逻辑学、认知科学交叉形成的一门科学,简称AI。
人工智能的发展历史大致可以分为这几个阶段:
第一阶段:50年代人工智能的兴起和冷落
人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序、LISP表处理语言等。但由于消解法推理能力的有限,以及机器翻译等的失败,使人工智能走入了低谷。
第二阶段:60年代末到70年代,专家系统出现,使人工智能研究出现新高潮。 DENDRAL化学质谱分析系统、MYCIN疾病诊断和治疗系统、PROSPECTIOR探矿系统、Hearsay-II语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,19xx年成立了国际人工智能联合会议
第三阶段:80年代,随着第五代计算机的研制,人工智能得到了很大发展。 日本19xx年开始了”第五代计算机研制计划”,即”知识信息处理计算机系统KIPS”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。
第四阶段:80年代末,神经网络飞速发展。
19xx年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。
第五阶段:90年代,人工智能出现新的研究高潮
由于网络技术特别是国际互连网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。另外,由于Hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深入到社会生活的各个领域。
对人工智能对世界的影响的感受及未来畅想
最近看了电影《黑客帝国》一系列,对其中的科幻生活有了很大的兴趣,不觉有了疑问:现在的世界是否会如电影中一样呢?人工智能的神话是否会发生
在当前社会中的呢 ?
在黑客帝国的世界里,程序员成为了耶稣,控制着整个世界,黑客帝国之所以成为经典,我认为,不是因为飞来飞去的超级人物,而是因为她暗自揭示了一个人与计算机世界的关系,一个发展趋势。谁知道200年以后会不会是智能机器统治了世界?
人类正向信息化的时代迈进,信息化是当前时代的主旋律。信息抽象结晶为知识,知识构成智能的基础。因此,信息化到知识化再到智能化,必将成为人类社会发展的趋势。人工智能已经并且广泛而有深入的结合到科学技术的各门学科和社会的各个领域中,她的概念,方法和技术正在各行各业广泛渗透。而在我们的身边,智能化的例子也屡见不鲜。在军事、工业和医学等领域中人工智能的应用已经显示出了它具有明显的经济效益潜力,和提升人们生活水平的最大便利性和先进性。
智能是一个宽泛的概念。智能是人类具有的特征之一。然而,对于什么是人类智能(或者说智力),科学界至今还没有给出令人满意的定义。有人从生物学角度定义为“中枢神经系统的功能”,有人从心理学角度定义为“进行抽象思维的能力”,甚至有人同义反复地把它定义为“获得能力的能力”,或者不求甚解地说它“就是智力测验所测量的那种东西”。这些都不能准确的说明人工智能的确切内涵。
虽然难于下定义,但人工智能的发展已经是当前信息化社会的迫切要求,同时研究人工智能也对探索人类自身智能的奥秘提供有益的帮助。所以每一次人工智能技术的进步都将带动计算机科学的大跨步前进。如果将现有的计算机技术、人工智能技术及自然科学的某些相关领域结合,并有一定的理论实践依据,计算机将拥有一个新的发展方向。
个人觉得研究人工智能的目的,一方面是要创造出具有智能的机器,另一方面是要弄清人类智能的本质,因此,人工智能既属于工程的范畴,又属于科学的范畴。通过研究和开发人工智能,可以辅助,部分替代甚至拓宽人类的智能,使计算机更好的造福人类。
人工智能研究的近期目标;是使现有的计算机不仅能做一般的数值计算及非数值信息的数据处理,而且能运用知识处理问题,能模拟人类的部分智能行为。按照这一目标,根据现行的计算机的特点研究实现智能的有关理论、技术和方法,建立相应的智能系统。例如目前研究开发的专家系统,机器翻译系统、模式识别系统、机器学习系统、机器人等。随着社会的发展,技术的进步,人工智能的发展是任何人都无法想象的。通过对人工智能的学习,以及与所听所见所闻的结合,我大胆的对未来人工智能的发展做出了以下拙劣的猜想:
一,融合阶段(2010—20xx年):
1、在某些城市,立法机关将主要采用人工智能专家系统来制定新的法律。
2、人们可以用语言来操纵和控制智能化计算机、互联网、收音机、电视机和移动电话,远程医疗和远程保健等远程服务变得更为完善。
3、智能化计算机和互联网在教育中扮演了重要角色,远程教育十分普及。
4、随着信息技术、生物技术和纳米技术的发展,人工智能科学逐渐完善。
5、许多植入了芯片的人体组成了人体通信网络(以后甚至可以不用植入任何芯片)。比如,将微型超级计算机植入人脑,人们就可通过植入的芯片直接进行通信。
6、抗病毒程序可以防止各种非自然因素引发灾难。
7、随着人工智能的加速发展,新制定的法律不仅可以用来更好地保护人类健康,而且能大幅度提高全社会的文明水准。比如,法律可以保护人们免受电磁烟雾的侵害,可以规范家用机器人的使用,可以更加有效地保护数据,可以禁止计算机合成技术在一些文化和艺术方面的应用(比如禁止合成电视名人),可以禁止编写具有自我保护意识的计算机程序。
二、自我发展阶段(2022—20xx年):
1、智能化计算机和互联网既能自我修复,也能自行进行科学研究,还能自己生产产品。
2、一些新型材料的出现,促使智能化向更高层次发展。
3、用可植入芯片实现人类、计算机和鲸目动物之间的直接通信,在以后的发展中甚至不用植入芯片也可实现此项功能。
4、制定“机器人法”等新的法律来约束机器人的行为,使人们不受机器人的侵害。
5、高水准的智能化技术可以使火星表面环境适合人类居住和发展。
三、升华阶段(2030—20xx年):
1、信息化的世界进一步发展成全息模式的世界。
2、人工智能系统可从环境中采集全息信息,身处某地的人们可以更容易地了解和知晓其他地方的情况。
3、人们对一些目前无法解释的自然现象会有更清楚的认识和更完善的解释,并将这些全新的知识应用在医疗、保健和安全等领域。
4、人工智能可以模仿人类的智能,因此会出现有关法律来规范这些行为。 人工智能一但拥有长足的进步,必将带动其他计算机技术的发展。 网络化将虚拟的世界变得无限大,届时,足不出户将成为一种习惯。人工智能必将带动人类的发展,起到决定性作用。
虽然不知道其中有多少在未来会得到实现,但也算是我通过对人工智能的学习所收获的总结。人工智能的繁荣景象和光明前景已展示出其诱人的魅力, 让我们一起期待未来的世界吧,一个全新的人工智能世界。
【篇13】人工智能的利与弊
摘要:随着社会的飞速发展, 科学技术不断进步, 工业领域生产模式发生变化, 人工智能时代势不可挡, 尤其是机器人得到更大范围的推广与应用。工业机器人的突出优势是精准度较高, 工作效率高, 能够承受较大工作强度, 为整个工业领域产量的提升以及质量的提高创造更加优质的条件。由此可见, 工业机器人已成为现代工业发展的趋势与方向。文章基于行业发展, 详细阐述了工业机器人的特征, 探讨其未来发展趋势与方向, 以期为整个工业行业的持续性发展提供更大的技术支撑。
关键词:人工智能时代; 工业机器人; 趋势;
Abstract:
With the rapid development of society, the continuous progress of science and technology, industrial production mode changes, the era of artificial intelligence is unstoppable, especially the robot has been more widely promoted and applied. The outstanding advantages of industrial robots are high accuracy, high work efficiency, able to withstand a greater intensity of work, for the entire industrial field of production and quality improvement to create more high-quality conditions. Thus it can be seen that industrial robot has become the trend and direction of modern industrial development. Based on the development of the industry, this paper expounds the characteristics of the industrial robot in detail, and discusses its future development trend and direction, in order to provide greater technical support for the sustainable development of the entire industrial industry.
Keyword:
era of artificial intelligence; industrial robot; trend;
随着人工智能时代的到来, 互联网技术取得巨大突破, 大数据技术成为核心, 为工业机器人产品性能的提升提供更加先进的技术支持。在工业机器人发展进程中, 其操作趋于简易化, 精准度更高, 能够广泛应用在诸多领域, 投入成本呈现不断降低的趋势。立足工业领域, 机器人应用于产品检测、焊接以及搬运等环节。工业机器人的出现强化对人力应用的缓解, 在优势上主要体现为较高的生产效率与较高品质的操作, 同时, 操作持久性更加突出。
1 工业机器人的构成以及类型
从构成上分析, 工业机器人主要包含三个部分, 即本体、驱动以及控制三个系统。从功能上分析, 一种机器人的作用体现在对人类手、手臂的模仿。另外一种更具智能化, 有效发挥仿生学的特征, 能力更显多样化, 自由度更高。在当前的工业领域, 之所以选择工业机器人, 主要源于其较低的单机价格, 便于维修, 应用效率较高。
2 人工智能时代工业机器人核心技术分析
2.1 工业机器人以高精度减速机为核心构成, 涉及多种技术类型, 要求较高
在工业机器人中, 关键性结构组成为高精度减速机, 涉及多种技术类型。首先, 材料成型控制技术十分关键, 尤其对减速机减速齿轮的耐磨性与刚性提出更高要求, 目的是保证运行的高精度标准。在材料构成方面, 要强化对金相组织、材料化学元素以及含量的科学控制。其次, 加工技术不容忽视。在减速器中, 非标特殊轴承是必不可少的组成部分, 结构极具特殊性, 需要减速器零件加工尺寸来确认间隙标准, 工人技术要求更高。
2.2 以电机与高精度伺服驱动器为核心, 实现对工业机器人的全方位控制
对于工业机器人的控制, 电机与高精度伺服驱动器作用突出, 强化对控制系统的管理, 尤其是在瞬间力、功率输出方面面临更高的标准。首先, 快响应伺服控制技术能实现对位置环、电流环以及速度的有序控制, 合理运用干扰观测以及前馈补偿算法。具体讲, 要采用指标预测法来构建内部预测模型, 达到闭环优化的目的。其次, 为了保证工业机器人能够有效发挥识别功能, 要依托在线参数自整定技术, 强化转动惯量以及PID参数的在线优化, 达到参数的精准判定。另外, 在线惯量辨识算法明确伺服驱动器的实际工况, 强化参数的智能化控制, 以现场实际为要求, 合理进行参数的调整。
2.3 以实时性为要求, 强化控制操作系统的稳定性与精确性
在工业机器人中, 运动学控制系统对实时性要求较高。目前, 机器人运动控制卡以定制方式为主, 同时, 强调与操作系统的密切配合, 强化数据传输、数据精确性以及稳定性的实现, 尤其是对于操作系统的消息处理机制, 更要关注稳定性与快速响应的需要, 增强实时性, 为机器人产业化道路的发展创造条件。
3 结合工业机器人应用实际准确掌握发展趋势与方向
3.1 工业机器人的发展更显系统性特征, 整体性能增强, 适用范围更广
立足新时期的发展, 工业领域的机器人更显多样性, 如焊接机器人、清洁机器人等逐渐投入使用, 工程自动化程度显著增强。随着技术水平的不断提升, 机器人的造价呈现下降的趋势, 但是, 性能却不断增强。例如, 对于工业领域的机械手, 其主要原理是进行人手及手臂的模仿, 实现灵活抓取以及搬运的功能, 满足自动化操作的目标。纵观当前, 机械手应用最为广泛的领域是工业制造业、包装业等。机械手能够在既定的时间内较为准确与高效地完成操作动作, 这也成为工业机器人发展的主要方向。目前, 信息技术发展迅速, 尤其是人工智能技术影响力不断扩大, 加之互联网技术的支持, 工业机器人发展更显系统性特征, 强化在控制系统、诊断系统以及维护系统功能的提升。同时, 依托仿真模拟化程序设计, 切实增强智能化与自动化水平, 整体性能不断提升, 在应用方面更显可靠性, 适用范围更广。
3.2 以工业发展需求为基础, 更显生物性与仿生性特点, 强化不良工作环境生产效率的提升
立足工业生产, 很多环节与环境保护相矛盾, 对从业者身心健康产生不利影响, 有些操作人类很难完成, 这也成为工业机器人得以推广应用的重要因素。例如, 对于真空机器人, 其之所以在工业中应用, 主要原因是半导体工业中, 真空传输晶圆这一环节人类无法完成, 而真空机器人的引进实现这一问题的解决。另外, 在一些恶劣环境中, 如适应无阻运动的蛇形机器人, 满足水下作业的仿生鱼机器人等, 都处于不断研发之中, 备受瞩目。也就是说, 在工业机器人的发展进程中, 更加关注其仿生性与生物性的特征, 能够有效实现对人类行为的模仿与替代, 成为新时期工业机器人研发的新动向。
3.3 基于不断升级与更新的计算机信息技术, 工业机器人控制系统更加完善, 加快统一化与标准化的实现
在机器人内部, 核心构成为控制系统, 是发挥功能的重要保障, 强化对记忆、示教、通信连接以及坐标设置功能的支持。当前, 计算机技术不断升级更新, 为工业机器人控制系统的优化与完善提供强大动力, 整体控制水平显著提升。具体讲, 在控制器方面, 由专用封闭式发展为开放式。也就是说, 计算机水平的提升使得工业机器人的控制系统突破专供的束缚, 更显统一化与标准化的趋势, 网络化特征明显。基于此, 工业机器人的操作更显便捷性, 具备简单的操作常识即可, 无需投入人力物力进行培训, 在很短的时间内就可以对机器人进行模块功能调整, 在根本上使机器人的使用更加方便与快捷, 维护管理工作也易于进行。
3.4 综合传感器融合配置技术日趋成熟与完善, 实现对人类思维与神经的多功能仿生
立足信息时代, 人工智能的发展势不可挡, 智能化成为工业机器人在未来的发展方向。智能化的机器人, 即强调机器人对人类模仿的更高层次, 需要具备更高层级的仿生, 既要能够模仿人类的动作行为, 同时, 还需要具有人类的思维与神经。基于此, 传感器成为智能工业机器人的重要构成部分, 尤其是视觉、力觉、触觉传感器的出现, 加快工业机器人智能化的发展速度。例如, 对于从事电弧焊接的机器人, 采用多传感器融合配置, 融电弧传感器、视觉传感器以及机器传感器于一体。在视觉传感器的支持下, 机器人能够凭借激光视觉扫描功能, 获取焊接过程中所需要的焊炬等数据信息, 保证电弧焊接的精准性。另外, 远距离遥控机器人的出现代表了综合性传感器融合配置技术上了新的台阶。这种技术在机器人未来发展中将得到更大范围的推广与应用, 处于不断完善与成熟中。
4 我国工业机器人发展存在的不足与凸显的问题
首先, 我国工业机器人起步较晚, 发展时间较短, 资金投入方面彰显不足, 在技术与经验方面彰显无力性, 处于不断摸索与提升阶段, 研发力度亟待增强。其次, 对于我国机器人的发展, 在生产技术与可靠性方面相对薄弱, 尤其是机器人很多关键部件需要进口, 生产成本大幅增加, 机器人市场仍需不断扩大, 尤其是过高的成本支出, 使得工业机器人在生产研发方面缺乏较高的积极性。再次, 工业机器人标准化生产的实现需要以规模优势为前提, 但是, 我国在生产与研发方面的投入尚未达标, 给推广与应用造成巨大阻力。
5 如何推动人工智能时代工业机器人的快速发展
随着时代的不断进步, 智能机器人技术处于不断创新升级中, 因此, 工业智能机器人在未来的发展要集中做好如下几个方面的工作。首先, 从理论研究方面分析, 要重视加强指挥制造技术的探究, 尤其是针对机器人中相关零部件的生产, 要切实提升产品生产质量, 有效应对生产难题, 借助新型制造技术与制造模式, 缩短机器人生产与推广时间。其次, 要结合社会需求, 合理增加智能机器人科研项目资金投入, 设置专项资金, 尤其是面对工业转型发展的新阶段, 要扩大对机器人及相关产业的投资量, 在根本上为工业智能机器人技术的进步创造条件。再次, 立足新时期, 要对工业机器人相关条例、规则等进行完善, 加快核心技术研发速度, 同时, 做好研发技术与成功经验的总结分析, 推动智能机器人工业化发展进程的加快, 构建更加完善的标准体系, 强化对人机交互准则的合理优化。
6 结束语
综上, 工业机器人是多学科相互融合与发展的产物, 对工业行业的发展意义巨大。因此, 要立足信息时代, 在人工智能技术的支撑下, 准确掌握工业机器人发展趋势, 明确技术特征, 促使工业机器人生产制造成本的不断降低, 性能逐步增强。同时, 要重视仿生学在工业机器人领域的研究与应用, 强化控制系统功能的不断升级改造, 加快多传感器融合配置技术的发展, 大幅提升工业机器人的智能化水平, 推动整个行业标准化与统一化建设, 拓展机器人应用领域, 以便更好发挥工业机器人在人工智能时代的价值。
参考文献
[1]谭文君, 董桂才, 张斌儒.我国工业机器人行业的发展现状及启示[J].宏观经济管理, 2022 (04) :42-47.
[2]王浩.工业机器人技术的发展与应用综述[J].中国新技术新产品, 2022 (03) :109-110.
[3]蔡济云.工业机器人在自动化控制中的应用研究[J].科技与创新, 2022 (01) :144-145.
相关文章:
- [范本]靠饮食怎么减肥 - 如何靠饮食减肥_减肥知识-小鱼资料库
- [范本]女生怎么减肥最快 - 女生怎么减肥最快最有效的方法_减肥知识-小鱼资料库
- [范本]溶脂手术有什么副作用 - 溶脂手术要多少钱_减肥知识-小鱼资料库
- [范本]我喝荷叶茶瘦了15斤血糖会高吗 - 我喝荷叶茶瘦了15斤_减肥知识-小鱼资料库
- [范本]减肥图片励志文字可爱 - 减肥图片励志文字图片_减肥知识-小鱼资料库
- [范本]什么方法丰胸效果最快 - 什么方法丰胸效果快_减肥知识-小鱼资料库
- [范本]怎样让咬肌瘦下来视频 - 怎么把咬肌瘦下去_减肥知识-小鱼资料库
- [范本]瘦肚子最快的4个动作 - 瘦肚子最快_减肥知识-小鱼资料库
- [范本]瑜伽丰胸的最快动作 - 瑜伽丰胸的最快方法_减肥知识-小鱼资料库
- [范本]瑜伽减肥动作视频教程 - 瑜伽减肥动作视频_减肥知识-小鱼资料库
相关推荐:
- [范本]减肥图片励志文字可爱 - 减肥图片励志文字图片_减肥知识-小鱼资料库
- [范本]学生怎么减肥最健康 - 学生怎么减肥最快最有效_减肥知识-小鱼资料库
- [范本]瘦腹部最快最有效的方法 - 如何快速瘦小腹的赘肉_减肥知识-小鱼资料库
- [范本]左旋肉碱品牌推荐 - 左旋肉碱牌子排行榜_减肥知识-小鱼资料库
- [范本]瑜伽视频教程1 - 瑜伽训练视频教程_减肥知识-小鱼资料库
- [范本]如何快速瘦小腿 - 快速瘦小腿_减肥知识-小鱼资料库
- [范本]到底哪种减肥药好 - 到底哪种减肥药瘦的最快最有效_减肥知识-小鱼资料库
- [范本]减肥塑形操 - 减肥塑形养生加盟店_减肥知识-小鱼资料库
- [范本]吃什么食物可以变白 - 吃什么食物可以丰胸效果最好_减肥知识-小鱼资料库
- [范本]减肚子上的赘肉操视频 - 减肚子上的赘肉做什么运动_减肥知识-小鱼资料库
- 靠饮食怎么减肥 - 如何靠饮食减肥_减肥知识-小鱼资料库
- 女生怎么减肥最快 - 女生怎么减肥最快最有效的方法_减肥知识-小鱼资料库
- 溶脂手术有什么副作用 - 溶脂手术要多少钱_减肥知识-小鱼资料库
- 我喝荷叶茶瘦了15斤血糖会高吗 - 我喝荷叶茶瘦了15斤_减肥知识-小鱼资料库
- 减肥图片励志文字可爱 - 减肥图片励志文字图片_减肥知识-小鱼资料库
- 什么方法丰胸效果最快 - 什么方法丰胸效果快_减肥知识-小鱼资料库
- 怎样让咬肌瘦下来视频 - 怎么把咬肌瘦下去_减肥知识-小鱼资料库
- 瘦肚子最快的4个动作 - 瘦肚子最快_减肥知识-小鱼资料库
- 瑜伽丰胸的最快动作 - 瑜伽丰胸的最快方法_减肥知识-小鱼资料库
- 瑜伽减肥动作视频教程 - 瑜伽减肥动作视频_减肥知识-小鱼资料库